Lebesgue constants for some interpolational ${\mathcal L}$-splines
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 4, pp. 215-224
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We find exact values for the uniform Lebesgue constants of interpolational ${\mathcal L}$-splines that are bounded on the real axis, have equidistant knots, and correspond to the linear third-order differential operator ${\mathcal L}_{3}(D)=D(D^{2}+\alpha^{2})$ with constant real coefficients, where $\alpha>0$. We compare the obtained result with the Lebesgue constants of other ${\mathcal L}$-splines.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Mots-clés : 
interpolation, Lebesgue constant.
Keywords: spline
                    
                  
                
                
                Keywords: spline
@article{TIMM_2016_22_4_a19,
     author = {S. I. Novikov},
     title = {Lebesgue constants for some interpolational ${\mathcal L}$-splines},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {215--224},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a19/}
}
                      
                      
                    S. I. Novikov. Lebesgue constants for some interpolational ${\mathcal L}$-splines. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 4, pp. 215-224. http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a19/
                  
                