Lebesgue constants for some interpolational ${\mathcal L}$-splines
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 4, pp. 215-224

Voir la notice de l'article provenant de la source Math-Net.Ru

We find exact values for the uniform Lebesgue constants of interpolational ${\mathcal L}$-splines that are bounded on the real axis, have equidistant knots, and correspond to the linear third-order differential operator ${\mathcal L}_{3}(D)=D(D^{2}+\alpha^{2})$ with constant real coefficients, where $\alpha>0$. We compare the obtained result with the Lebesgue constants of other ${\mathcal L}$-splines.
Mots-clés : interpolation, Lebesgue constant.
Keywords: spline
@article{TIMM_2016_22_4_a19,
     author = {S. I. Novikov},
     title = {Lebesgue constants for some interpolational ${\mathcal L}$-splines},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {215--224},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a19/}
}
TY  - JOUR
AU  - S. I. Novikov
TI  - Lebesgue constants for some interpolational ${\mathcal L}$-splines
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 215
EP  - 224
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a19/
LA  - ru
ID  - TIMM_2016_22_4_a19
ER  - 
%0 Journal Article
%A S. I. Novikov
%T Lebesgue constants for some interpolational ${\mathcal L}$-splines
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 215-224
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a19/
%G ru
%F TIMM_2016_22_4_a19
S. I. Novikov. Lebesgue constants for some interpolational ${\mathcal L}$-splines. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 4, pp. 215-224. http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a19/