Lebesgue constants for some interpolational ${\mathcal L}$-splines
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 4, pp. 215-224 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We find exact values for the uniform Lebesgue constants of interpolational ${\mathcal L}$-splines that are bounded on the real axis, have equidistant knots, and correspond to the linear third-order differential operator ${\mathcal L}_{3}(D)=D(D^{2}+\alpha^{2})$ with constant real coefficients, where $\alpha>0$. We compare the obtained result with the Lebesgue constants of other ${\mathcal L}$-splines.
Mots-clés : interpolation, Lebesgue constant.
Keywords: spline
@article{TIMM_2016_22_4_a19,
     author = {S. I. Novikov},
     title = {Lebesgue constants for some interpolational ${\mathcal L}$-splines},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {215--224},
     year = {2016},
     volume = {22},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a19/}
}
TY  - JOUR
AU  - S. I. Novikov
TI  - Lebesgue constants for some interpolational ${\mathcal L}$-splines
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 215
EP  - 224
VL  - 22
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a19/
LA  - ru
ID  - TIMM_2016_22_4_a19
ER  - 
%0 Journal Article
%A S. I. Novikov
%T Lebesgue constants for some interpolational ${\mathcal L}$-splines
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 215-224
%V 22
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a19/
%G ru
%F TIMM_2016_22_4_a19
S. I. Novikov. Lebesgue constants for some interpolational ${\mathcal L}$-splines. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 4, pp. 215-224. http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a19/

[1] Subbotin Yu.N., “O svyazi mezhdu konechnymi raznostyami i sootvetstvuyuschimi proizvodnymi”, Tr. MIAN SSSR, 78, 1965, 24–42 | MR | Zbl

[2] Schoenberg I.J., Cardinal spline interpolation, SIAM, Philadelphia, 1973, 125 pp. | MR | Zbl

[3] Novikov S.I., “Priblizhenie odnogo klassa differentsiruemykh funktsii $\mathcal L$-splainami”, Mat. zametki, 33:3 (1983), 393–408 | MR | Zbl

[4] Richards F., “Best bounds for the uniform periodic spline interpolation operator”, J. Approx. Theory, 7:3 (1973), 302–317 | DOI | MR | Zbl

[5] Richards F., “The Lebesgue constants for cardinal spline interpolation”, J. Approx. Theory, 14:2 (1975), 83–92 | DOI | MR | Zbl

[6] Tzimbalario J., “Lebesgue constants for cardinal ${\mathcal L}$-spline interpolation”, Canad. J. Math., 29:2 (1977), 441–448 | DOI | MR | Zbl

[7] Morsche H.G., “On the Lebesgue constants for cardinal ${\mathcal L}$-spline interpolation”, J. Approx. Theory, 45:3 (1985), 232–246 | DOI | MR | Zbl

[8] Kim V.A., “Tochnye konstanty Lebega dlya interpolyatsionnykh $\mathcal L$-splainov tretego poryadka”, Mat. zametki, 81:1 (2008), 59–68 | DOI

[9] Kim V.A., “Tochnye konstanty Lebega dlya interpolyatsionnykh ogranichennykh $\mathcal L$-splainov tretego poryadka”, Sib. mat. zhurn., 51:2 (2010), 330–341 | MR

[10] Shevaldin V.T., “Ob odnoi zadache ekstremalnoi interpolyatsii”, Mat. zametki, 29:4 (1981), 603–622 | MR | Zbl

[11] Subbotin Yu.N., Telyakovskii S.A., “Asimptotika konstant Lebega periodicheskikh interpolyatsionnykh splainov s ravnootstoyaschimi uzlami”, Mat. sb., 191:8 (2000), 131–140 | DOI | MR | Zbl

[12] Troch I., “On the interval of disconjugacy of linear autonomous differential equation”, SIAM J. Math. Analysis, 12:1 (1981), 78–89 | DOI | MR | Zbl

[13] Novikov S.I., “On $\mathcal L$-spline interpolation and approximation on the whole real line”, Approximation and function spaces (Warsaw, 1986), Banach Center Publ., 22, PWN, Warsaw, 1989, 293–300 | MR