On Hankel operators associated with linearly ordered abelian groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 4, pp. 201-214
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider two variants of generalizations of Hankel operators to the case of linearly ordered abelian groups. Criteria for the boundedness and compactness of these operators are given, in particular, in terms of functions of bounded mean oscillation. It is proved that the generalized Hankel operators are non-Fredholm. Some applications to the theory of Toeplitz operators on groups are given.
Keywords:
Hankel operator, integral Hankel operator, Fredholm operator, compact operator, bounded mean oscillation, linearly ordered abelian group, compact abelian group, Toeplitz operator.
@article{TIMM_2016_22_4_a18,
author = {A. R. Mirotin and E. Yu. Kuz'menkova},
title = {On {Hankel} operators associated with linearly ordered abelian groups},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {201--214},
publisher = {mathdoc},
volume = {22},
number = {4},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a18/}
}
TY - JOUR AU - A. R. Mirotin AU - E. Yu. Kuz'menkova TI - On Hankel operators associated with linearly ordered abelian groups JO - Trudy Instituta matematiki i mehaniki PY - 2016 SP - 201 EP - 214 VL - 22 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a18/ LA - ru ID - TIMM_2016_22_4_a18 ER -
A. R. Mirotin; E. Yu. Kuz'menkova. On Hankel operators associated with linearly ordered abelian groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 4, pp. 201-214. http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a18/