On Hankel operators associated with linearly ordered abelian groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 4, pp. 201-214

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider two variants of generalizations of Hankel operators to the case of linearly ordered abelian groups. Criteria for the boundedness and compactness of these operators are given, in particular, in terms of functions of bounded mean oscillation. It is proved that the generalized Hankel operators are non-Fredholm. Some applications to the theory of Toeplitz operators on groups are given.
Keywords: Hankel operator, integral Hankel operator, Fredholm operator, compact operator, bounded mean oscillation, linearly ordered abelian group, compact abelian group, Toeplitz operator.
@article{TIMM_2016_22_4_a18,
     author = {A. R. Mirotin and E. Yu. Kuz'menkova},
     title = {On {Hankel} operators associated with linearly ordered abelian groups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {201--214},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a18/}
}
TY  - JOUR
AU  - A. R. Mirotin
AU  - E. Yu. Kuz'menkova
TI  - On Hankel operators associated with linearly ordered abelian groups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 201
EP  - 214
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a18/
LA  - ru
ID  - TIMM_2016_22_4_a18
ER  - 
%0 Journal Article
%A A. R. Mirotin
%A E. Yu. Kuz'menkova
%T On Hankel operators associated with linearly ordered abelian groups
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 201-214
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a18/
%G ru
%F TIMM_2016_22_4_a18
A. R. Mirotin; E. Yu. Kuz'menkova. On Hankel operators associated with linearly ordered abelian groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 4, pp. 201-214. http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a18/