@article{TIMM_2016_22_4_a18,
author = {A. R. Mirotin and E. Yu. Kuz'menkova},
title = {On {Hankel} operators associated with linearly ordered abelian groups},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {201--214},
year = {2016},
volume = {22},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a18/}
}
TY - JOUR AU - A. R. Mirotin AU - E. Yu. Kuz'menkova TI - On Hankel operators associated with linearly ordered abelian groups JO - Trudy Instituta matematiki i mehaniki PY - 2016 SP - 201 EP - 214 VL - 22 IS - 4 UR - http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a18/ LA - ru ID - TIMM_2016_22_4_a18 ER -
A. R. Mirotin; E. Yu. Kuz'menkova. On Hankel operators associated with linearly ordered abelian groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 4, pp. 201-214. http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a18/
[1] Peller B.V., Operatory Gankelya i ikh prilozheniya, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.; Izhevsk, 2005, 1028 pp.
[2] Nikolski N.K., Operators, functions, and systems: An easy reading, in 2 vol, v. I, Amer. Math. Soc., N. Y., 2002, 461 pp. | MR
[3] Nikolski N.K., Operators, Functions, and Systems: An Easy Reading, in 2 vol, v. II, Amer. Math. Soc., N. Y., 2002, 439 pp. | MR
[4] Nakazi T., “Commuting dilations and uniform algebras”, Canad. J. Math., 42:5 (1990), 776–789 | DOI | MR | Zbl
[5] Chaozong Y., Xiaoman Ch. , Kunyu G., “Hankel operators and Hankel algebras”, Chin. Ann. of Math., 19 B:1 (1998), 65–76 | MR
[6] Mirotin A.R., “Fredgolmovy i spektralnye svoistva tëplitsevykh operatorov v prostranstvakh $H^p$ nad uporyadochennymi gruppami”, Mat. sb., 202:5 (2011), 101 – 116 | DOI | MR | Zbl
[7] Dyba R.V., Mirotin A.R., “Funktsii ogranichennoi srednei ostsillyatsii i gankelevy operatory na kompaktnykh abelevykh gruppakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:2 (2014), 135–144 | MR
[8] Rudin W., Fourier analysis on groups, Intersciense Publishers, N. Y.; London, 1962, 285 pp. | MR | Zbl
[9] Pontryagin L.S., Nepreryvnye gruppy, 2-e izd., GITTL, M., 1954, 515 pp. | MR
[10] T. Ehrhardt, van der C. Mee, L. Rodman, I. Spitkovski, “Factorization in weighted Wiener matrix Algebras on linearly ordered abelian groups”, Int. Eq. Oper. Th., 58:1 (2007), 65–86 | DOI | MR | Zbl
[11] Nehari Z., “On bounded bilinear forms”, Ann. of Math., 65:2 (1957), 153–162 | DOI | MR | Zbl
[12] Wang J., “Note on theorem of Nehari on Hankel forms”, Proc. Amer. Math. Soc., 24 (1970), 103–105 | DOI | MR | Zbl
[13] Teh H.H., “Construction of orders in abelian groups”, Proc. Cambridge Phil. Soc., 57 (1961), 476–482 | DOI | MR | Zbl
[14] Zaitseva M.I., “O mnozhestve poryadkov v abelevykh gruppakh”, Uspekhi mat. nauk, 8:1 (1953), 35–137
[15] Mirotin A.R., Garmonicheskii analiz na abelevykh polugruppakh, Izd-vo GGU im. F. Skoriny, Gomel, 2008, 207 pp.
[16] Mirotin A.R., “Hilbert transform in context of locally compact abelian groups”, Int. J. Pure Appl. Math., 51:4 (2009), 463–474 | MR | Zbl
[17] Fefferman C., “Characterization of bounded mean oscillation”, Bull. Amer. Math. Soc., 77 (1971), 587–588 | DOI | MR | Zbl
[18] Conway J.B., A course in operator theory, Graduate Studies in Math., 21, Amer. Math. Soc., N. Y., 2000, 372 pp. | MR | Zbl
[19] Dyba R.V., “Teorema Nekhari na kompaktnykh abelevykh gruppakh s lineino uporyadochennoi gruppoi kharakterov”, Problemy fiziki, matematiki i tekhniki, 2011, no. 3 (8), 57–60 | Zbl
[20] Adukov V., “Wiener–Hopf operators on a subsemigroup of a discrete torsion free abelian group”, Int. Eq. Oper. Th., 16 (1993), 305–332 | DOI | MR | Zbl
[21] Cima J.A., Janson S., Yale K., “Completely continuous Hankel operators on $H^\infty$ and Bourgain algebras”, Proc. Amer. Math. Soc., 105:1 (1985), 121–125 | MR