On Hankel operators associated with linearly ordered abelian groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 4, pp. 201-214 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider two variants of generalizations of Hankel operators to the case of linearly ordered abelian groups. Criteria for the boundedness and compactness of these operators are given, in particular, in terms of functions of bounded mean oscillation. It is proved that the generalized Hankel operators are non-Fredholm. Some applications to the theory of Toeplitz operators on groups are given.
Keywords: Hankel operator, integral Hankel operator, Fredholm operator, compact operator, bounded mean oscillation, linearly ordered abelian group, compact abelian group, Toeplitz operator.
@article{TIMM_2016_22_4_a18,
     author = {A. R. Mirotin and E. Yu. Kuz'menkova},
     title = {On {Hankel} operators associated with linearly ordered abelian groups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {201--214},
     year = {2016},
     volume = {22},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a18/}
}
TY  - JOUR
AU  - A. R. Mirotin
AU  - E. Yu. Kuz'menkova
TI  - On Hankel operators associated with linearly ordered abelian groups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 201
EP  - 214
VL  - 22
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a18/
LA  - ru
ID  - TIMM_2016_22_4_a18
ER  - 
%0 Journal Article
%A A. R. Mirotin
%A E. Yu. Kuz'menkova
%T On Hankel operators associated with linearly ordered abelian groups
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 201-214
%V 22
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a18/
%G ru
%F TIMM_2016_22_4_a18
A. R. Mirotin; E. Yu. Kuz'menkova. On Hankel operators associated with linearly ordered abelian groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 4, pp. 201-214. http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a18/

[1] Peller B.V., Operatory Gankelya i ikh prilozheniya, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.; Izhevsk, 2005, 1028 pp.

[2] Nikolski N.K., Operators, functions, and systems: An easy reading, in 2 vol, v. I, Amer. Math. Soc., N. Y., 2002, 461 pp. | MR

[3] Nikolski N.K., Operators, Functions, and Systems: An Easy Reading, in 2 vol, v. II, Amer. Math. Soc., N. Y., 2002, 439 pp. | MR

[4] Nakazi T., “Commuting dilations and uniform algebras”, Canad. J. Math., 42:5 (1990), 776–789 | DOI | MR | Zbl

[5] Chaozong Y., Xiaoman Ch. , Kunyu G., “Hankel operators and Hankel algebras”, Chin. Ann. of Math., 19 B:1 (1998), 65–76 | MR

[6] Mirotin A.R., “Fredgolmovy i spektralnye svoistva tëplitsevykh operatorov v prostranstvakh $H^p$ nad uporyadochennymi gruppami”, Mat. sb., 202:5 (2011), 101 – 116 | DOI | MR | Zbl

[7] Dyba R.V., Mirotin A.R., “Funktsii ogranichennoi srednei ostsillyatsii i gankelevy operatory na kompaktnykh abelevykh gruppakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:2 (2014), 135–144 | MR

[8] Rudin W., Fourier analysis on groups, Intersciense Publishers, N. Y.; London, 1962, 285 pp. | MR | Zbl

[9] Pontryagin L.S., Nepreryvnye gruppy, 2-e izd., GITTL, M., 1954, 515 pp. | MR

[10] T. Ehrhardt, van der C. Mee, L. Rodman, I. Spitkovski, “Factorization in weighted Wiener matrix Algebras on linearly ordered abelian groups”, Int. Eq. Oper. Th., 58:1 (2007), 65–86 | DOI | MR | Zbl

[11] Nehari Z., “On bounded bilinear forms”, Ann. of Math., 65:2 (1957), 153–162 | DOI | MR | Zbl

[12] Wang J., “Note on theorem of Nehari on Hankel forms”, Proc. Amer. Math. Soc., 24 (1970), 103–105 | DOI | MR | Zbl

[13] Teh H.H., “Construction of orders in abelian groups”, Proc. Cambridge Phil. Soc., 57 (1961), 476–482 | DOI | MR | Zbl

[14] Zaitseva M.I., “O mnozhestve poryadkov v abelevykh gruppakh”, Uspekhi mat. nauk, 8:1 (1953), 35–137

[15] Mirotin A.R., Garmonicheskii analiz na abelevykh polugruppakh, Izd-vo GGU im. F. Skoriny, Gomel, 2008, 207 pp.

[16] Mirotin A.R., “Hilbert transform in context of locally compact abelian groups”, Int. J. Pure Appl. Math., 51:4 (2009), 463–474 | MR | Zbl

[17] Fefferman C., “Characterization of bounded mean oscillation”, Bull. Amer. Math. Soc., 77 (1971), 587–588 | DOI | MR | Zbl

[18] Conway J.B., A course in operator theory, Graduate Studies in Math., 21, Amer. Math. Soc., N. Y., 2000, 372 pp. | MR | Zbl

[19] Dyba R.V., “Teorema Nekhari na kompaktnykh abelevykh gruppakh s lineino uporyadochennoi gruppoi kharakterov”, Problemy fiziki, matematiki i tekhniki, 2011, no. 3 (8), 57–60 | Zbl

[20] Adukov V., “Wiener–Hopf operators on a subsemigroup of a discrete torsion free abelian group”, Int. Eq. Oper. Th., 16 (1993), 305–332 | DOI | MR | Zbl

[21] Cima J.A., Janson S., Yale K., “Completely continuous Hankel operators on $H^\infty$ and Bourgain algebras”, Proc. Amer. Math. Soc., 105:1 (1985), 121–125 | MR