Graphs in which local subgraphs are strongly regular with second eigenvalue 5
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 4, pp. 188-200 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

J. Koolen proposed the problem of studying distance-regular graphs in which the neighborhoods of vertices are strongly regular graphs with second eigenvalue $\le t$ for a given positive integer $t$. Earlier Koolen's problem was solved for $t=4$. We complete the classification of distance-regular graphs in which the neighborhoods of vertices are strongly regular graphs with second eigenvalue $r$, where $4$$r\le5$.
Keywords: strongly regular graph, eigenvalue, distance-regular graph.
@article{TIMM_2016_22_4_a17,
     author = {A. A. Makhnev and D. V. Paduchikh},
     title = {Graphs in which local subgraphs are strongly regular with second eigenvalue 5},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {188--200},
     year = {2016},
     volume = {22},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a17/}
}
TY  - JOUR
AU  - A. A. Makhnev
AU  - D. V. Paduchikh
TI  - Graphs in which local subgraphs are strongly regular with second eigenvalue 5
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 188
EP  - 200
VL  - 22
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a17/
LA  - ru
ID  - TIMM_2016_22_4_a17
ER  - 
%0 Journal Article
%A A. A. Makhnev
%A D. V. Paduchikh
%T Graphs in which local subgraphs are strongly regular with second eigenvalue 5
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 188-200
%V 22
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a17/
%G ru
%F TIMM_2016_22_4_a17
A. A. Makhnev; D. V. Paduchikh. Graphs in which local subgraphs are strongly regular with second eigenvalue 5. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 4, pp. 188-200. http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a17/

[1] Makhnev A.A., “O grafakh, okrestnosti vershin kotorykh silno regulyarny s $k=2\mu$”, Mat. sb., 191:7 (2000), 89–104 | DOI | MR | Zbl

[2] Makhnev A.A., Paduchikh D.V., “Distantsionno regulyarnye grafy, v kotorykh okrestnosti vershin silno regulyarny so vtorym sobstvennym znacheniem, ne bolshim 3”, Dokl. AN, 464:4 (2015), 396–400 | DOI | MR | Zbl

[3] Makhnev A.A., Paduchikh D.V., “Distantsionno regulyarnye grafy s silno regulyarnymi lokalnymi podgrafami, imeyuschimi sobstvennoe znachenie 4”, Maltsevskie chteniya, tez. dokl., Novosibirsk, 2016, 72

[4] Makhnev A.A., “Strongly regular graphs with nonprincipal eigenvalue 5 and its extensions”, Intern. Conf. “Groups and Graphs, Algorithms and Automata”, Abstr., Yekaterinburg, 2015, 68

[5] Gutnova A.K., Makhnev A.A., “Rasshireniya psevdogeometricheskikh grafov dlya $pG_{s-5}(s,t)$”, Vladikavkaz. mat. zhurn., 18:3 (2016), 35–42

[6] Brouwer A.E., Haemers W.H., Spectra of graphs, Springer, N. Y., 2012, 250 pp. | MR | Zbl

[7] Koolen J.H., Park J., “Distance-regular graphs with $a_1$ or $c_2$ at least half the valency”, J. Comb. Theory. Ser. A, 119:3 (2012), 546–555 | DOI | MR | Zbl

[8] Brouwer A.E., Cohen A.M., Neumaier A., Distance-regular graphs, Springer-Verlag, Berlin, 1989, 495 pp. | MR | Zbl

[9] Blokhuis A., Brouwer A.E., “Locally 4-by-4 grid graphs”, J. Graph Theory, 13:3 (1989), 229–244 | DOI | MR | Zbl

[10] Neumaier A., “Strongly regular graphs with smallest eigenvalue $-m$”, Arch. Math., 33:1 (1979), 392–400 | DOI | MR

[11] Gavrilyuk A.L., Makhnev A.A., “O distantsionno regulyarnykh grafakh, v kotorykh okrestnosti vershin izomorfny grafu Khofmana–Singltona”, Dokl. AN, 428:2 (2009), 157–160 | MR | Zbl