The inverse theorem in various metrics of approximation theory for periodic functions with monotone Fourier coefficients
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 4, pp. 153-162

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the exactness with respect to order of an upper bound for the $k$th-order modulus of smoothness in $L_q({\mathbb T})$ in terms of the elements of a sequence of best approximations in $L_p({\mathbb T})$ on the class of all functions with monotonically decreasing Fourier coefficients, where $1$ and $k\in {\mathbb N}$.
Keywords: modulus of smoothness, best approximation, inverse theorem in various metrics, trigonometric Fourier series with monotone coefficients, order-sharp inequality on a class.
@article{TIMM_2016_22_4_a14,
     author = {N. A. Il'yasov},
     title = {The inverse theorem in various metrics of approximation theory for periodic functions with monotone {Fourier} coefficients},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {153--162},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a14/}
}
TY  - JOUR
AU  - N. A. Il'yasov
TI  - The inverse theorem in various metrics of approximation theory for periodic functions with monotone Fourier coefficients
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 153
EP  - 162
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a14/
LA  - ru
ID  - TIMM_2016_22_4_a14
ER  - 
%0 Journal Article
%A N. A. Il'yasov
%T The inverse theorem in various metrics of approximation theory for periodic functions with monotone Fourier coefficients
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 153-162
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a14/
%G ru
%F TIMM_2016_22_4_a14
N. A. Il'yasov. The inverse theorem in various metrics of approximation theory for periodic functions with monotone Fourier coefficients. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 4, pp. 153-162. http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a14/