Approximation in $L_2$ by partial integrals of the multidimensional Fourier transform in the eigenfunctions of the Sturm--Liouville operator
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 4, pp. 136-152
Voir la notice de l'article provenant de la source Math-Net.Ru
For approximations in the space $L^2(\mathbb{R}^d_+)$ by partial integrals of the multidimensional Fourier transform in the eigenfunctions of the Sturm–Liouville operator, we prove the Jackson inequality with exact constant and optimal argument in the modulus of continuity. The multidimensional weight that defines the Sturm–Liouville operator is the product of one-dimensional weights. The one-dimensional weights can be, in particular, power and hyperbolic weights with various parameters. The optimality of the argument in the modulus of continuity is established by means of the multidimensional Gauss quadrature formula over zeros of an eigenfunction of the Sturm–Liouville operator. The obtained results are complete; they generalize a number of known results.
Keywords:
Sturm–Liouville operator, $L^2$-space, Jackson inequality
Mots-clés : Fourier transform, Gauss quadrature formula.
Mots-clés : Fourier transform, Gauss quadrature formula.
@article{TIMM_2016_22_4_a13,
author = {D. V. Gorbachev and V. I. Ivanov and R. A. Veprintsev},
title = {Approximation in $L_2$ by partial integrals of the multidimensional {Fourier} transform in the eigenfunctions of the {Sturm--Liouville} operator},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {136--152},
publisher = {mathdoc},
volume = {22},
number = {4},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a13/}
}
TY - JOUR AU - D. V. Gorbachev AU - V. I. Ivanov AU - R. A. Veprintsev TI - Approximation in $L_2$ by partial integrals of the multidimensional Fourier transform in the eigenfunctions of the Sturm--Liouville operator JO - Trudy Instituta matematiki i mehaniki PY - 2016 SP - 136 EP - 152 VL - 22 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a13/ LA - ru ID - TIMM_2016_22_4_a13 ER -
%0 Journal Article %A D. V. Gorbachev %A V. I. Ivanov %A R. A. Veprintsev %T Approximation in $L_2$ by partial integrals of the multidimensional Fourier transform in the eigenfunctions of the Sturm--Liouville operator %J Trudy Instituta matematiki i mehaniki %D 2016 %P 136-152 %V 22 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a13/ %G ru %F TIMM_2016_22_4_a13
D. V. Gorbachev; V. I. Ivanov; R. A. Veprintsev. Approximation in $L_2$ by partial integrals of the multidimensional Fourier transform in the eigenfunctions of the Sturm--Liouville operator. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 4, pp. 136-152. http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a13/