Mots-clés : interpolation
@article{TIMM_2016_22_4_a11,
author = {Yu. S. Volkov},
title = {The general problem of polynomial spline interpolation},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {114--125},
year = {2016},
volume = {22},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a11/}
}
Yu. S. Volkov. The general problem of polynomial spline interpolation. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 4, pp. 114-125. http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a11/
[1] Ahlberg J.H., Nilson E.N., Walsh J.L., The theory of splines and their applications, Academic Press, New York, 1967, 284 pp. | MR | Zbl
[2] Volkov Yu.S., “Interpolyatsiya splainami chetnoi stepeni po Subbotinu i po Marsdenu”, Ukr. mat. zhurn., 66:7 (2014), 891–908 | MR | Zbl
[3] Stechkin S.B., Subbotin Yu.N., Splainy v vychislitelnoi matematike, Nauka, M., 1976, 248 pp. | MR
[4] Zavyalov Yu.S., Kvasov B.I., Miroshnichenko V.L., Metody splain-funktsii, Nauka, M., 1980, 352 pp. | MR
[5] Volkov Yu.S., “Raskhodimost interpolyatsionnykh splainov nechetnoi stepeni”, Priblizhenie splainami, Vychisl. sistemy, 106, IM SO AN SSSR, Novosibirsk, 1984, 41–56 | MR
[6] Volkov Yu.S., “O postroenii interpolyatsionnykh polinomialnykh splainov”, Splain-funktsii i ikh prilozheniya, Vychisl. sistemy, 159, IM SO RAN, Novosibirsk, 1997, 3–18 | MR
[7] Volkov Yu.S., “Novyi sposob postroeniya interpolyatsionykh kubicheskikh splainov”, Dokl. AN, 382:2 (2002), 155–157 | MR | Zbl
[8] Volkov Yu.S., “Vpolne neotritsatelnye matritsy v metodakh postroeniya interpolyatsionnykh splainov nechetnoi stepeni”, Mat. tr., 7:2 (2004), 3–34 | MR
[9] Volkov Yu.S., “Bezuslovnaya skhodimost esche odnoi srednei proizvodnoi dlya interpolyatsionnykh splainov nechetnoi stepeni”, Dokl. AN, 401:5 (2005), 592–594 | MR | Zbl
[10] Volkov Yu.S., “O skhodimosti protsessa interpolyatsii dlya proizvodnykh polnogo splaina”, Ukr. mat. visn., 9:2 (2012), 278–296 | Zbl
[11] Schoenberg I.J., Whitney A., “On Polya frequency functions. III. The positivity of translation determinants with an application to the interpolation problem by spline curves”, Trans. Amer. Math. Soc., 74:2 (1953), 246–259 | MR | Zbl
[12] Boor C. de, A practical guide to splines, Springer, New York, 1978, 392 pp. | MR | Zbl
[13] Boor C. de, Lyche T., Schumaker L.L., “On calculating with $B$-splines, II. Integration”, Numerische Methoden der Approximationstheorie (Tagung, Math. Forschungsinst, Oberwolfach, 1975), v. 3, Internat. Ser. Numer. Math., 30, eds. L. Collatz, H. Werner, G. Meinardus, Birkhauser, Basel, 1976, 123–146 | MR
[14] Gantmakher F.R., Krein M.G., Ostsillyatsionnye matritsy i yadra i malye kolebaniya mekhanicheskikh sistem, Gostekhizdat, M.; L., 1950, 359 pp.
[15] Boor C. de, Pinkus A., “Backward error analysis for totally positive linear systems”, Numer. Math., 27:4 (1977), 485–490 | DOI | MR | Zbl
[16] Schumaker L.L., Spline functions: basic theory, Wiley, New York, 1981, 553 pp. | MR | Zbl
[17] Volkov Yu.S., Shevaldin V.T., “Usloviya formosokhraneniya pri interpolyatsii splainami vtoroi stepeni po Subbotinu i po Marsdenu”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18:4 (2012), 145–152
[18] Boor C. de, “On the convergence of odd-degree spline interpolation”, J. Approxim. Theory, 1:4 (1968), 452–463 | DOI | MR | Zbl
[19] Volkov Yu.S., Miroshnichenko V.L., “Otsenki norm matrits, obratnykh k matritsam monotonnogo vida i vpolne neotritsatelnym matritsam”, Sib. mat. zhurn., 50:6 (2009), 1248–1254 | MR | Zbl
[20] Boor C. de, “On bounding spline interpolation”, J. Approxim. Theory, 14:3 (1975), 191–203 | DOI | MR | Zbl
[21] Volkov Yu.S., Subbotin Yu.N., “50 let zadache Shënberga o skhodimosti splain-interpolyatsii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:1 (2014), 52–67