Shape preservation conditions under interpolation by Subbotin's parabolic splines
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 4, pp. 102-113 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Parabolic splines are applied to solve an interpolation problem with the conditions of preserving the piecewise monotonicity and convexity. Sufficient conditions are established for the piecewise monotonicity and convexity of Subbotin's quadratic interpolation splines, and numerical examples are given.
Keywords: quadratic spline, shape preservation.
Mots-clés : interpolation
@article{TIMM_2016_22_4_a10,
     author = {V. V. Bogdanov and Yu. S. Volkov},
     title = {Shape preservation conditions under interpolation by {Subbotin's} parabolic splines},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {102--113},
     year = {2016},
     volume = {22},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a10/}
}
TY  - JOUR
AU  - V. V. Bogdanov
AU  - Yu. S. Volkov
TI  - Shape preservation conditions under interpolation by Subbotin's parabolic splines
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 102
EP  - 113
VL  - 22
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a10/
LA  - ru
ID  - TIMM_2016_22_4_a10
ER  - 
%0 Journal Article
%A V. V. Bogdanov
%A Yu. S. Volkov
%T Shape preservation conditions under interpolation by Subbotin's parabolic splines
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 102-113
%V 22
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a10/
%G ru
%F TIMM_2016_22_4_a10
V. V. Bogdanov; Yu. S. Volkov. Shape preservation conditions under interpolation by Subbotin's parabolic splines. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 4, pp. 102-113. http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a10/

[1] Miroshnichenko V.L., “Convex and monotone spline interpolation”, Constructive Theory of Function, Proc. Int. Conf. (Varna, 1984), Publ. House of Bulgarian Acad. Sci., Sofia, 1984, 610–620

[2] Miroshnichenko V.L., “Dostatochnye usloviya monotonnosti i vypuklosti dlya interpolyatsionnykh parabolicheskikh splainov”, Splainy i ikh prilozheniya, Vychislitelnye sistemy: sb. st., 142, IM SO AN SSSR, Novosibirsk, 1991, 3–14 | MR

[3] Yu.S. Volkov, V.V. Bogdanov, V.L. Miroshnichenko, V.T. Shevaldin, “Formosokhranyayuschaya interpolyatsiya kubicheskimi splainami”, Mat. zametki, 88:6 (2010), 836–844 | DOI | MR | Zbl

[4] Volkov Yu.S., Shevaldin V.T., “Usloviya formosokhraneniya pri interpolyatsii splainami vtoroi stepeni po Subbotinu i po Marsdenu”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18:4 (2012), 145–152

[5] Zavyalov Yu.S., “O neotritsatelnom reshenii sistemy uravnenii s nestrogo yakobievoi matritsei”, Sib. mat. zhurn., 37:6 (1996), 1303–1307 | MR | Zbl

[6] Bogdanov V.B., “Dostatochnye usloviya komonotonnoi interpolyatsii kubicheskimi splainami klassa $C^2$”, Mat. tr., 14:2 (2011), 3–13 | MR | Zbl

[7] Volkov Yu.S., “Novyi sposob postroeniya interpolyatsionykh kubicheskikh splainov”, Dokl. AN, 382:2 (2002), 155–157 | MR | Zbl

[8] Volkov Yu.S., “Novyi sposob postroeniya interpolyatsionnykh kubicheskikh splainov”, Zhurn. vychisl. matematiki i mat. fiziki, 44:2 (2004), 231–241 | MR | Zbl

[9] Bogdanov V.B., “Dostatochnye usloviya neotritsatelnosti resheniya sistemy uravnenii s nestrogo yakobievoi matritsei”, Sib. mat. zhurn., 54:3 (2013), 544–550 | MR | Zbl

[10] Stechkin S.B., Subbotin Yu.N., Splainy v vychislitelnoi matematike, Nauka, M., 1976, 248 pp. | MR

[11] Volkov Yu.S., “O monotonnoi interpolyatsii kubicheskimi splainami”, Vychisl. tekhnologii, 6:6 (2001), 14–24 | MR | Zbl

[12] Bogdanov V.B., Volkov Yu.S., “Vybor parametrov obobschennykh kubicheskikh splainov pri vypukloi interpolyatsii”, Sib. zhurn. vychisl. matematiki, 9:1 (2006), 5–22 | MR | Zbl

[13] Collatz L., Funktionalanalysis und Numerische Mathematik, Springer-Verlag, Berlin, 1964, 371 pp. | MR | Zbl

[14] Zavyalov Yu.S., Kvasov B.I., Miroshnichenko V.L., Metody splain-funktsii, Nauka, M., 1980, 352 pp. | MR

[15] Marsden M., “Quadratic spline interpolation”, Bull. Amer. Math. Soc., 80:5 (1974), 903–906 | DOI | MR | Zbl

[16] Volkov Yu.S., “Interpolyatsiya splainami chetnoi stepeni po Subbotinu i po Marsdenu”, Ukr. mat. zhurn., 66:7 (2014), 891–908 | MR | Zbl