On finite simple classical groups over fields of different characteristics with coinciding prime graphs
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 3, pp. 101-116 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Suppose that $G$ is a finite group, $\pi(G)$ is the set of prime divisors of its order, and $\omega(G)$ is the set of orders of its elements. We define a graph on $\pi(G)$ with the following adjacency relation: different vertices $r$ and $s$ from $\pi(G)$ are adjacent if and only if $rs\in \omega(G)$. This graph is called the $\it{Gruenberg-Kegel\, graph }$ for the $\it{prime\, graph }$ of $G$ and is denoted by $GK(G)$. Let $G$ and $G_1$ be two nonisomorphic finite simple groups of Lie type over fields of orders $q$ and $q_1$, respectively, with different characteristics. It is proved that, if $G$ is a classical group of a sufficiently high Lie rank, then the prime graphs of the groups $G$ and $G_1$ may coincide only in one of three cases. It is also proved that, if $G=A_1(q)$ and $G_1$ is a classical group, then the prime graphs of the groups $G$ and $G_1$ coincide only if $\{G,G_1\}$ is equal to $\{A_1(9),A_1(4)\}$, $\{A_1(9),A_1(5)\}$, $\{A_1(7),A_1(8)\}$, or $\{A_1(49),^2A_3(3)\}$.
Keywords: finite simple classical group, prime graph, spectrum.
@article{TIMM_2016_22_3_a9,
     author = {M. R. Zinov'eva},
     title = {On finite simple classical groups over fields of different characteristics with coinciding prime graphs},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {101--116},
     year = {2016},
     volume = {22},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a9/}
}
TY  - JOUR
AU  - M. R. Zinov'eva
TI  - On finite simple classical groups over fields of different characteristics with coinciding prime graphs
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 101
EP  - 116
VL  - 22
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a9/
LA  - ru
ID  - TIMM_2016_22_3_a9
ER  - 
%0 Journal Article
%A M. R. Zinov'eva
%T On finite simple classical groups over fields of different characteristics with coinciding prime graphs
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 101-116
%V 22
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a9/
%G ru
%F TIMM_2016_22_3_a9
M. R. Zinov'eva. On finite simple classical groups over fields of different characteristics with coinciding prime graphs. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 3, pp. 101-116. http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a9/

[1] Kourovskaya tetrad. Nereshennye voprosy teorii grupp, Izd. 18-e, dop., In-t matematiki SO RAN, Novosibirsk, 2014, 253 pp. URL: http://math.nsc.ru/alglog/18kt.pdf

[2] Hagie M., “The prime graph of a sporadic simple group”, Comm. Algebra, 31:9 (2003), 4405–4424 | DOI | MR | Zbl

[3] Zvezdina M.A., “O neabelevykh prostykh gruppakh s grafom prostykh chisel kak u znakoperemennoi gruppy”, Sib. mat. zhurn., 54:1 (2013), 65–76 | MR | Zbl

[4] Zinoveva M.R., “Konechnye prostye gruppy lieva tipa nad polem odnoi kharakteristiki s odinakovym grafom prostykh chisel”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:2 (2014), 168–183 | MR

[5] Kondratev A.S., “O komponentakh grafa prostykh chisel konechnykh prostykh grupp”, Mat. sb., 180:6 (1989), 787–797 | MR | Zbl

[6] Williams J. S., “Prime graph components of finite groups”, J. Algebra, 69:2 (1981), 487–513 | DOI | MR | Zbl

[7] Vasilev A.V., Vdovin E.P., “Kriterii smezhnosti v grafe prostykh chisel”, Algebra i logika, 44:6 (2005), 682–725 | MR | Zbl

[8] Vasilev A.V., Vdovin E.P., “Kokliki maksimalnogo razmera v grafe prostykh chisel konechnoi prostoi gruppy”, Algebra i logika, 50:4 (2011), 425–470 | MR | Zbl

[9] Zsigmondy K., “Zur Theorie der Potenzreste”, Monatsh. Math. Phys., 3 (1892), 265–284 | DOI | MR | Zbl

[10] Gerono G.C., “Note sur la r$\acute{e}$solution en nombres entiers et positifs de l'$\acute{e}$quation $x^m=y^n+1$”, Nouv. Ann. Math. (2), 9 (1870), 69–471

[11] Zavarnitsine A.V., “Finite simple groups with narrow prime spectrum”, Sib. Elektron. Mat. Izv., 6 (2009), 1–12 | MR | Zbl

[12] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, R.A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985, 252 pp. | MR | Zbl