@article{TIMM_2016_22_3_a8,
author = {V. G. Zhadan},
title = {A variant of the dual simplex method for a linear semidefinite programming problem},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {90--100},
year = {2016},
volume = {22},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a8/}
}
V. G. Zhadan. A variant of the dual simplex method for a linear semidefinite programming problem. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 3, pp. 90-100. http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a8/
[1] Eremin I.I., Teoriya lineinoi optimizatsii, Izd-vo “Ekaterinburg”, Ekaterinburg, 1999, 312 pp.
[2] Vasilev F.P., Ivanitskii A.Yu., Lineinoe programmirovanie, Faktorial Press, M., 2008, 347 pp. | MR
[3] Vandenberghe L., Boyd S., “Semidefinite programming”, SIAM Review, 38:1 (1996), 49–95 | DOI | MR | Zbl
[4] Handbook of Semidefinite Programming, eds. H. Wolkowicz, R. Saigal, L. Vandenberghe, Kluwer Acad. Publ., Dordrecht, 2000, 656 pp. | MR
[5] Lasserre J.B., “Linear programming with positive semi-definite matreces”, Math. Problems in Engineering, 2 (1996), 499–522 | DOI | Zbl
[6] Pataki G., “Cone-LP's and semidefinite programs: geometry and simplex-type method”, Proc. Conf. on Integer Programming and Combinatorial Optimization (IPCO 5), Vancouver, 1996, 1–13
[7] Kosolap A.I., “Simpleks-metod dlya resheniya zadach poluopredelennogo programmirovaniya”, Vestn. Donets. nats. un-ta. (Ser. A: Estestvennye nauki), 2009, no. 2, 365–369
[8] Zhadan V.G., “Ob odnom variante simpleks-metoda dlya lineinoi zadachi poluopredelennogo programmirovaniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 21:3 (2015), 117–127 | MR
[9] Magnus Ya.R., Neidekker Ch., Matrichnoe differentsialnoe ischislenie s prilozheniyami k statistike i ekonometrike, Fizmatlit, M., 2002, 496 pp.