Biharmonic wavelets and their applications
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 3, pp. 76-89 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We propose a solution method for the basic boundary value problem for biharmonic functions. In this method, a special system of functions is orthogonalized and Fourier series in this system are considered. It is proved that the constructed series converge inside the domain. Biharmonic wavelets are constructed based on the orthogonalized system. It is established that series of wavelets converge uniformly in the domain with boundary.
Keywords: biharmonic function, boundary value problem, wavelets.
@article{TIMM_2016_22_3_a7,
     author = {G. A. Dubosarskii},
     title = {Biharmonic wavelets and their applications},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {76--89},
     year = {2016},
     volume = {22},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a7/}
}
TY  - JOUR
AU  - G. A. Dubosarskii
TI  - Biharmonic wavelets and their applications
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 76
EP  - 89
VL  - 22
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a7/
LA  - ru
ID  - TIMM_2016_22_3_a7
ER  - 
%0 Journal Article
%A G. A. Dubosarskii
%T Biharmonic wavelets and their applications
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 76-89
%V 22
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a7/
%G ru
%F TIMM_2016_22_3_a7
G. A. Dubosarskii. Biharmonic wavelets and their applications. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 3, pp. 76-89. http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a7/

[1] Dubosarskii G.A., “Garmonicheskie vspleski v mnogosvyaznoi oblasti s krugovymi granitsami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:1 (2013), 99–114 | MR

[2] Dubosarskii G.A., “Garmonicheskie vspleski v mnogosvyaznoi oblasti s krugovymi granitsami i ikh prilozheniya k zadacham matematicheskoi fiziki”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:2 (2013), 109–124 | MR

[3] Dubosarskii G.A., “Neortogonalnye garmonicheskie vspleski i ikh prilozhenie k resheniyu zadachi Neimana”, Tr. In-ta matematiki i mekhaniki UrO RAN, 21:4 (2015), 136–151 | MR

[4] Subbotin Yu.N., Chernykh N.I., “Vspleski periodicheskie, garmonicheskie i analiticheskie v kruge s netsentralnym otverstiem”, Tr. Mezhdunar. let. mat. shkoly S.B. Stechkina po teorii funktsii, Izd-vo TulGU, Tula, 2007, 129–149

[5] Subbotin Yu.N., Chernykh N.I., “Garmonicheskie vspleski v kraevykh zadachakh dlya garmonicheskikh i bigarmonicheskikh funktsii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16:4 (2010), 281–296 | MR

[6] Goluzin G.M., “Reshenie osnovnykh ploskikh zadach matematicheskoi fiziki dlya sluchaya uravneniya Laplace'a i mnogosvyaznykh oblastei, ogranichennykh okruzhnostyami (metod funktsionalnykh uravnenii)”, Mat. sb., 41:2 (1934), 246–276 | Zbl

[7] Subbotin Yu.N., Chernykh N.I., “Vspleski v prostranstvakh garmonicheskikh funktsii”, Izv. RAN. Ser. matematicheskaya, 64:1 (2000), 145–174 | DOI | MR | Zbl