Differential equations in the algebra of $C$-generalized functions
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 3, pp. 62-75 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the Cauchy problem for a system of linear differential equations whose coefficients are derivatives of functions of bounded variation. The problem is immersed in the space of Colombeau generalized functions. If the coefficients are derivatives of step functions, we find an explicit solution $\mathcal R(\varphi_\mu,t)$ of the Cauchy problem in terms of representatives, and the limit of the solution as $\mu \rightarrow +0$ is defined to be the solution of the original problem. In this way, we obtain a densely defined (on the space of regulated functions) operator $\mathbf T$, which associates the Cauchy problem with its solution. Next, using a known topological result on continuous extension, we extend $\mathbf T$ to the operator $\widehat{\mathbf T}$ defined on the entire space of functions of bounded variation. It turns out that the solution is a regulated function.
Keywords: regulated functions, functions of bounded variation, Colombeau generalized functions, systems of differential equations.
Mots-clés : distributions
@article{TIMM_2016_22_3_a6,
     author = {V. Ya. Derr},
     title = {Differential equations in the algebra of $C$-generalized functions},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {62--75},
     year = {2016},
     volume = {22},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a6/}
}
TY  - JOUR
AU  - V. Ya. Derr
TI  - Differential equations in the algebra of $C$-generalized functions
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 62
EP  - 75
VL  - 22
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a6/
LA  - ru
ID  - TIMM_2016_22_3_a6
ER  - 
%0 Journal Article
%A V. Ya. Derr
%T Differential equations in the algebra of $C$-generalized functions
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 62-75
%V 22
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a6/
%G ru
%F TIMM_2016_22_3_a6
V. Ya. Derr. Differential equations in the algebra of $C$-generalized functions. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 3, pp. 62-75. http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a6/

[1] Derr V.Ya., Kim I. G., “Prostranstvo pravilnykh funktsii i differentsialnoe uravnenie s obobschennymi funktsiyami v koeffitsientakh”, Vest. Udmurt. un-ta. Matematika, 2014, no. 1, 3–18 | Zbl

[2] Kurzweil J., “Generalized ordinary differential equations”, Czechoslovak Math. J., 1958, no. 8 (83), 360–388 | MR | Zbl

[3] Levin A.Yu., “Voprosy teorii obyknovennogo differentsialnogo uravneniya. II.”, Vestn. Yaroslav. un-ta, 1974, no. 8, 122–144

[4] Filippov A.F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985, 224 pp. | MR

[5] Derr V.Ya., “K opredeleniyu resheniya lineinogo differentsialnogo uravneniya s obobschennymi funktsiyami v koeffitsientakh”, Dokl. AN SSSR, 298:2 (1988), 269–272 | MR | Zbl

[6] Zavalischin S.T., Sesekin A.N., Impulsnye protsessy: modeli i prilozheniya, Nauka, M., 1991, 256 pp. | MR

[7] Colombeau J.F., Elementary introduction to new generalized functions, North-Holland Mathematics Studies, 113, North-Holland Publishing Co., Amsterdam, 1985, 300 pp. | MR | Zbl

[8] Derr V.Ya., Dizendorf K.I., “O differentsialnykh uravneniyakh v $C$-obobschennykh funktsiyakh”, Izv. vuzov. Matematika, 1996, no. 11 (414), 39–49 | MR | Zbl

[9] Burbaki N., Obschaya topologiya. Osnovnye struktury, Nauka, M., 1968, 274 pp. | MR

[10] Egorov Yu. V., “K teorii obobschennykh funktsii”, Uspekhi mat. nauk, 45:5 (1990), 3–40 | MR | Zbl

[11] Radyno Ya.V., Ngo Fu Tkhan, “Differentsialnye uravneniya v algebre novykh obobschennykh funktsii”, Dokl. AN Belarusi, 37:4 (1993), 5–20 | MR

[12] Ligeza J., “On some boundary value problems for ordinary linear differential equations of second order in the Colombeau algebra”, Acta Univ. Palacki. Olomouc. Facultas Rerum Naturalium. Mathematica, 35 (1996), 103–119 | MR | Zbl

[13] Ligeza J., “Boundary value problems for ordinary linear differential equations in the Colombeau algebra”, Acta Univ. Palacki. Olomouc. Facultas Rerum Naturalium. Mathematica, 38 (1999), 95 –112 | MR | Zbl

[14] Dieudonne J., Foudations of modern analysis, Academic Press, New York; London, 1960, 408 pp. | MR

[15] Dedonne Zh., Osnovy sovremennogo analiza, Mir, M., 1964, 430 pp.

[16] Rodionov V.I., “Prisoedinennyi integral Rimana - Stiltesa”, Izv. vuzov. Matematika, 2007, no. 2(537), 79–82 | MR | Zbl

[17] Fedorov V.M., Teoriya funktsii i funktsionalnyi analiz, Ch. II, Izd-vo Mosk. un-ta, M., 2000, 191 pp.

[18] Shvarts L., Analiz, 1, Mir, M., 1972, 824 pp.

[19] Tolstonogov A.A., “O nekotorykh svoistvakh prostranstva pravilnykh funktsii”, Mat. zametki, 35:6 (1984), 303–312 | MR

[20] Derr V.Ya., “O differentsialnykh uravneniyakh s obobschennymi funktsiyami i $C$-integralnykh uravneniyakh”, Vestn. Udmurt. un-ta, 2000, no. 1, 49–60

[21] Derr V.Ya., Kinzebulatov D.M., “Alfa-integral tipa Stiltesa”, Vest. Udmurt. un-ta. Matematika, 2006, no. 1, 41–65

[22] Derr V.Ya., Teoriya funktsii deistvitelnoi peremennoi. Lektsii i uprazhneniya, Vyssh. shk., M., 2008, 384 pp.

[23] Derr V.Ya., Funktsionalnyi analiz. Lektsii i uprazhneniya, Knorus, M., 2013, 462 pp.

[24] Biagioni H.A., Colombeau J.F., “New generalized functions and $C^\infty$ functions with values in generalized complex numbers”, J. London Math. Soc., 2:33 (1986), 169–179 | DOI | MR