@article{TIMM_2016_22_3_a5,
author = {S. V. Goryainov and G. S. Isakova and V. V. Kabanov and N. V. Maslova and L. V. Shalaginov},
title = {On {Deza} graphs with disconnected second neighborhood of a vertex},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {50--61},
year = {2016},
volume = {22},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a5/}
}
TY - JOUR AU - S. V. Goryainov AU - G. S. Isakova AU - V. V. Kabanov AU - N. V. Maslova AU - L. V. Shalaginov TI - On Deza graphs with disconnected second neighborhood of a vertex JO - Trudy Instituta matematiki i mehaniki PY - 2016 SP - 50 EP - 61 VL - 22 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a5/ LA - ru ID - TIMM_2016_22_3_a5 ER -
%0 Journal Article %A S. V. Goryainov %A G. S. Isakova %A V. V. Kabanov %A N. V. Maslova %A L. V. Shalaginov %T On Deza graphs with disconnected second neighborhood of a vertex %J Trudy Instituta matematiki i mehaniki %D 2016 %P 50-61 %V 22 %N 3 %U http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a5/ %G ru %F TIMM_2016_22_3_a5
S. V. Goryainov; G. S. Isakova; V. V. Kabanov; N. V. Maslova; L. V. Shalaginov. On Deza graphs with disconnected second neighborhood of a vertex. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 3, pp. 50-61. http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a5/
[1] A.V. Mityanina, “O $K_{1,3}$-svobodnykh tochnykh grafakh Deza”, Tr. In-ta matematiki i mekhaniki UrO RAN, 22:1, 231–234 | MR
[2] Biggs N., Algebraic graph theory, Cambridge University Press, Cambridge, 1993, 216 pp. | MR
[3] Brouwer A.E., Cohen A.M., Neumaier A., Distance-regular graphs, Springer-Verlag, Berlin, 1989, 495 pp. | MR | Zbl
[4] Brouwer A.E., van Lint J. H., “Strongly regular graphs and partial geometries, enumeration and design”, Proc. of the Silver Jubilee Conference at the University of Waterloo, eds. D.M. Jackson and S.A. Vanstone, Academic Press, Toronto, 1984, 85–122 | MR
[5] Cioaba S.M., Koolen J.H., “On the connectedness of the complement of a ball in distance-regular graphs”, J. Algebraic Combinator., 38:1 (2013), 191–195 | DOI | MR | Zbl
[6] M. Erickson, S. Fernando, W.H. Haemers, D. Hardy, J. Hemmeter, “Deza graphs: a generalization of strongly regular graphs”, J. Comb. Designs, 7 (1999), 359–405 | 3.0.CO;2-U class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR
[7] Diestel R., Graph theory, Springer-Verlag, Berlin, 2010, 410 pp. | MR
[8] A.D. Gardiner, C.D. Godsil., A.D. Hensel, G.F. Royle, “Second neighbourhoods of strongly regular graphs”, Discrete Math., 103 (1992), 161–170 | DOI | MR | Zbl