@article{TIMM_2016_22_3_a4,
author = {A. I. Golikov and Yu. G. Evtushenko},
title = {A new class of theorems of the alternative},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {44--49},
year = {2016},
volume = {22},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a4/}
}
A. I. Golikov; Yu. G. Evtushenko. A new class of theorems of the alternative. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 3, pp. 44-49. http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a4/
[1] Mangasarian O.L., Nonlinear programming, SIAM, Philadelphia, 1994, 220 pp. | MR | Zbl
[2] Giannessi F., “Theorems of the alternative and optimization”, Encyclopedia of Optimization, 5, Kluwer Acad. Publ., Dordrecht [et al.], 2001, 437–444
[3] Dax A., “The relationship between theorems of the alternative, least norm problems, steepest descent directions, and degeneracy: A review”, Ann. Operat. Res., 46:1 (1993), 11–60 | MR | Zbl
[4] Golikov A.I., Evtushenko Yu.G., “Teoremy ob alternativakh i ikh primenenie v chislennykh metodakh”, Zhurn. vychisl. matematiki i mat. fiziki, 43:3 (2003), 354–375 | MR | Zbl
[5] Evtushenko Yu.G., Zhadan V.G., Barerno-proektivnye i barerno-nyutonovskie chislennye metody optimizatsii (sluchai lineinogo programmirovaniya), Izd-vo VTs RAN, M., 1992, 76 pp.
[6] Roos S., Terlaky T., Vial J.-Ph., Theory and algorithms for linear optimization. An interior point approach, Wiley, Chichester, 1997, 508 pp. | MR | Zbl
[7] Golikov A.I., Evtushenko Yu.G., “Otyskanie normalnykh reshenii v zadachakh lineinogo programmirovaniya”, Zhurn. vychisl. matematiki i mat. fiziki, 40:12 (2000), 1766–1386 | MR
[8] Golikov A.I., Evtushenko Yu.G., “Dva parametricheskikh semeistva zadach lineinogo programmirovaniya i ikh prilozheniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 8:4 (2002), 31–44
[9] Eremin I.I., Teoriya dvoistvennosti v lineinoi optimizatsii, Izd-vo Yuzhno-Ural. gos. un-ta, Chelyabinsk, 2005, 195 pp. | MR