A new class of theorems of the alternative
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 3, pp. 44-49 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The connection is established between theorems of the alternative for linear systems of equations and/or inequalities and duality theorems in linear programming. We give new versions of theorems of the alternative in which the alternative systems have different matrices of various sizes.
Keywords: theorems of the alternative, systems of linear equations and inequalities, linear programming, duality.
@article{TIMM_2016_22_3_a4,
     author = {A. I. Golikov and Yu. G. Evtushenko},
     title = {A new class of theorems of the alternative},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {44--49},
     year = {2016},
     volume = {22},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a4/}
}
TY  - JOUR
AU  - A. I. Golikov
AU  - Yu. G. Evtushenko
TI  - A new class of theorems of the alternative
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 44
EP  - 49
VL  - 22
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a4/
LA  - ru
ID  - TIMM_2016_22_3_a4
ER  - 
%0 Journal Article
%A A. I. Golikov
%A Yu. G. Evtushenko
%T A new class of theorems of the alternative
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 44-49
%V 22
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a4/
%G ru
%F TIMM_2016_22_3_a4
A. I. Golikov; Yu. G. Evtushenko. A new class of theorems of the alternative. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 3, pp. 44-49. http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a4/

[1] Mangasarian O.L., Nonlinear programming, SIAM, Philadelphia, 1994, 220 pp. | MR | Zbl

[2] Giannessi F., “Theorems of the alternative and optimization”, Encyclopedia of Optimization, 5, Kluwer Acad. Publ., Dordrecht [et al.], 2001, 437–444

[3] Dax A., “The relationship between theorems of the alternative, least norm problems, steepest descent directions, and degeneracy: A review”, Ann. Operat. Res., 46:1 (1993), 11–60 | MR | Zbl

[4] Golikov A.I., Evtushenko Yu.G., “Teoremy ob alternativakh i ikh primenenie v chislennykh metodakh”, Zhurn. vychisl. matematiki i mat. fiziki, 43:3 (2003), 354–375 | MR | Zbl

[5] Evtushenko Yu.G., Zhadan V.G., Barerno-proektivnye i barerno-nyutonovskie chislennye metody optimizatsii (sluchai lineinogo programmirovaniya), Izd-vo VTs RAN, M., 1992, 76 pp.

[6] Roos S., Terlaky T., Vial J.-Ph., Theory and algorithms for linear optimization. An interior point approach, Wiley, Chichester, 1997, 508 pp. | MR | Zbl

[7] Golikov A.I., Evtushenko Yu.G., “Otyskanie normalnykh reshenii v zadachakh lineinogo programmirovaniya”, Zhurn. vychisl. matematiki i mat. fiziki, 40:12 (2000), 1766–1386 | MR

[8] Golikov A.I., Evtushenko Yu.G., “Dva parametricheskikh semeistva zadach lineinogo programmirovaniya i ikh prilozheniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 8:4 (2002), 31–44

[9] Eremin I.I., Teoriya dvoistvennosti v lineinoi optimizatsii, Izd-vo Yuzhno-Ural. gos. un-ta, Chelyabinsk, 2005, 195 pp. | MR