On the local structure of distance-regular Mathon graphs
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 3, pp. 293-298

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the structure of local subgraphs of distance-regular Mathon graphs of even valency. We describe some infinite series of locally $\Delta$-graphs of this family, where $\Delta$ is a strongly regular graph that is the union of affine polar graphs of type "$-$," a pseudogeometric graph for $pG_{l}(s,l)$, or a graph of rank 3 realizable by means of the van Lint-Schrijver scheme. We show that some Mathon graphs are characterizable by their intersection arrays in the class of vertex transitive graphs.
Keywords: arc-transitive graph, distance-regular graph, (locally) strongly regular graph
Mots-clés : antipodal cover, Mathon graph, automorphism.
@article{TIMM_2016_22_3_a30,
     author = {L. Yu. Tsiovkina},
     title = {On the local structure of distance-regular {Mathon} graphs},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {293--298},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a30/}
}
TY  - JOUR
AU  - L. Yu. Tsiovkina
TI  - On the local structure of distance-regular Mathon graphs
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 293
EP  - 298
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a30/
LA  - ru
ID  - TIMM_2016_22_3_a30
ER  - 
%0 Journal Article
%A L. Yu. Tsiovkina
%T On the local structure of distance-regular Mathon graphs
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 293-298
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a30/
%G ru
%F TIMM_2016_22_3_a30
L. Yu. Tsiovkina. On the local structure of distance-regular Mathon graphs. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 3, pp. 293-298. http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a30/