On the local structure of distance-regular Mathon graphs
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 3, pp. 293-298
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the structure of local subgraphs of distance-regular Mathon graphs of even valency. We describe some infinite series of locally $\Delta$-graphs of this family, where $\Delta$ is a strongly regular graph that is the union of affine polar graphs of type "$-$," a pseudogeometric graph for $pG_{l}(s,l)$, or a graph of rank 3 realizable by means of the van Lint-Schrijver scheme. We show that some Mathon graphs are characterizable by their intersection arrays in the class of vertex transitive graphs.
Keywords:
arc-transitive graph, distance-regular graph, (locally) strongly regular graph
Mots-clés : antipodal cover, Mathon graph, automorphism.
Mots-clés : antipodal cover, Mathon graph, automorphism.
@article{TIMM_2016_22_3_a30,
author = {L. Yu. Tsiovkina},
title = {On the local structure of distance-regular {Mathon} graphs},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {293--298},
publisher = {mathdoc},
volume = {22},
number = {3},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a30/}
}
L. Yu. Tsiovkina. On the local structure of distance-regular Mathon graphs. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 3, pp. 293-298. http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a30/