Semimodular and Arguesian varieties of epigroups. I
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 3, pp. 31-43 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We describe varieties of epigroups such that they contain at least one 3-step nilpotent epigroup and their lattice of subvarieties is modular, distributive, Arguesian, or semimodular.
Keywords: epigroup, variety, lattice of subvarieties, distributivity, Arguesian variety, modularity, semimodularity.
@article{TIMM_2016_22_3_a3,
     author = {B. M. Vernikov and D. V. Skokov},
     title = {Semimodular and {Arguesian} varieties of epigroups. {I}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {31--43},
     year = {2016},
     volume = {22},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a3/}
}
TY  - JOUR
AU  - B. M. Vernikov
AU  - D. V. Skokov
TI  - Semimodular and Arguesian varieties of epigroups. I
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 31
EP  - 43
VL  - 22
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a3/
LA  - ru
ID  - TIMM_2016_22_3_a3
ER  - 
%0 Journal Article
%A B. M. Vernikov
%A D. V. Skokov
%T Semimodular and Arguesian varieties of epigroups. I
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 31-43
%V 22
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a3/
%G ru
%F TIMM_2016_22_3_a3
B. M. Vernikov; D. V. Skokov. Semimodular and Arguesian varieties of epigroups. I. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 3, pp. 31-43. http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a3/

[1] Vernikov B.M., “Polumodulyarnye i dezargovy mnogoobraziya polugrupp: zapreschennye podmnogoobraziya”, Izv. Ural. gos. un-ta. Matematika, mekhanika, 2002, no. 22(4), 16–42 | MR | Zbl

[2] Vernikov B.M., “Kvazitozhdestva v modulyarnykh reshetkakh mnogoobrazii polugrupp”, Izv. Ural. gos. un-ta. Matematika, mekhanika, 2005, no. 38(8), 5–35 | MR | Zbl

[3] Vernikov B.M., Volkov M.V., “Polumodulyarnye i dezargovy mnogoobraziya polugrupp: zavershenie opisaniya”, Izv. Ural. gos. un-ta. Matematika, mekhanika, 2004, no. 30(6), 5–36 | MR | Zbl

[4] Volkov M.V., “Mnogoobraziya polugrupp s modulyarnoi reshetkoi podmnogoobrazii”, Izv. vuzov. Matematika, 1989, no. 6, 51–60 | MR

[5] Volkov M.V., “Mnogoobraziya polugrupp s modulyarnoi reshetkoi podmnogoobrazii. II”, Izv. vuzov. Matematika, 1992, no. 7, 3–8 | MR | Zbl

[6] Volkov M.V., “Mnogoobraziya polugrupp s modulyarnoi reshetkoi podmnogoobrazii. III”, Izv. vuzov. Matematika, 1992, no. 8, 21–29 | MR | Zbl

[7] Volkov M.V., “Mnogoobraziya polugrupp s modulyarnoi reshetkoi podmnogoobrazii”, Dokl. Akad. nauk, 326:3 (1992), 409–413 | MR | Zbl

[8] Volkov M.V., “Polumodulyarnye i dezargovy mnogoobraziya polugrupp: tozhdestva”, Izv. Ural. gos. un-ta. Matematika, mekhanika, 2002, no. 22(4), 43–61 | MR | Zbl

[9] Golubov E.A., Sapir M.V., “Finitno approksimiruemye mnogoobraziya polugrupp”, Izv. vuzov. Matematika, 1982, no. 11, 21–29 | MR | Zbl

[10] Shevrin L.N., “K teorii epigrupp. I”, Mat. sb., 185:8 (1994), 129–160 | MR | Zbl

[11] Shevrin L.N., Vernikov B.M., Volkov M.V., “Reshetki mnogoobrazii polugrupp”, Izv. vuzov. Matematika, 2009, no. 3, 3–36 | MR | Zbl

[12] Baker K.A., “Equational classes of modular lattices”, Pacific J. Math., 28:1 (1969), 9–15 | DOI | MR | Zbl

[13] Gusev S.V., Vernikov B.M., “Endomorphisms of the lattice of epigroup varieties”, 22, arXiv: http://arxiv.org/pdf/1404.0478v4

[14] Jipsen P., Rose H., Varieties of lattices, Lect. Notes Math., 1533, Springer Verlag, Berlin, 1992, 162 pp. | DOI | MR | Zbl

[15] McKenzie R.N., “Equational bases for lattice theories”, Math. Scand., 27:1 (1970), 24–38 | MR | Zbl

[16] Shaprynskii V.Yu., Skokov D.V., Vernikov B.M., “Special elements of the lattice of epigroup varieties”, Algebra Universalis, 76:1 (2016), 1–30 | DOI | MR | Zbl

[17] Shevrin L.N., “Epigroups”, Structural theory of automata, semigroups, and universal algebra, Springer, Dordrecht, 2005, 331–380 | DOI | MR

[18] Vernikov B.M., Volkov M.V., “Commuting fully invariant congruences on free semigroups”, Contrib. General Algebra, 12 (2000), 391–417 | MR | Zbl

[19] Volkov M.V., “Semigroup varieties with commuting fully invariant congruences on free objects”, Contemp. Math., 131:3 (1992), 295–316 | DOI | MR | Zbl

[20] Volkov M.V., ““Forbidden divisor” characterizations of epigroups with certain properties of group elements”, RIMS Kokyuroku. (Algebraic Systems, Formal Languages and Computations), 1166 (2000), 226–234 | MR | Zbl

[21] Volkov M.V., Ershova T.A., “The lattice of varieties of semigroups with completely regular square”, Monash Conf. on Semigroup Theory, World Sci. Publ., N. Y., 1991, 306–322 | MR | Zbl