Semimodular and Arguesian varieties of epigroups. I
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 3, pp. 31-43

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe varieties of epigroups such that they contain at least one 3-step nilpotent epigroup and their lattice of subvarieties is modular, distributive, Arguesian, or semimodular.
Keywords: epigroup, variety, lattice of subvarieties, distributivity, Arguesian variety, modularity, semimodularity.
@article{TIMM_2016_22_3_a3,
     author = {B. M. Vernikov and D. V. Skokov},
     title = {Semimodular and {Arguesian} varieties of epigroups. {I}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {31--43},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a3/}
}
TY  - JOUR
AU  - B. M. Vernikov
AU  - D. V. Skokov
TI  - Semimodular and Arguesian varieties of epigroups. I
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 31
EP  - 43
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a3/
LA  - ru
ID  - TIMM_2016_22_3_a3
ER  - 
%0 Journal Article
%A B. M. Vernikov
%A D. V. Skokov
%T Semimodular and Arguesian varieties of epigroups. I
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 31-43
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a3/
%G ru
%F TIMM_2016_22_3_a3
B. M. Vernikov; D. V. Skokov. Semimodular and Arguesian varieties of epigroups. I. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 3, pp. 31-43. http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a3/