A linear differential game of pursuit with impulse and integrally constrained controls of the players
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 3, pp. 273-282 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Sufficient conditions of pursuit termination are proposed for a linear differential game of pursuit when one of the players applies an impulse-type control and the other player applies an integrally constrained control. Methods for finding the pursuer's controls that guarantee the termination of pursuit in a finite time are presented. At the end of the paper, we give examples illustrating the results. The method used in the second example provides an alternative: the space $\mathbb{R}^m$ is divided into two parts so that the pursuit can be terminated from any point of the first part and the pursuit cannot be terminated from any point of the second part.
Keywords: resolving function, impulse control, pursuit, pursuer, evader, integral constraint, terminal set.
@article{TIMM_2016_22_3_a28,
     author = {M. Tukhtasinov},
     title = {A linear differential game of pursuit with impulse and integrally constrained controls of the players},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {273--282},
     year = {2016},
     volume = {22},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a28/}
}
TY  - JOUR
AU  - M. Tukhtasinov
TI  - A linear differential game of pursuit with impulse and integrally constrained controls of the players
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 273
EP  - 282
VL  - 22
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a28/
LA  - ru
ID  - TIMM_2016_22_3_a28
ER  - 
%0 Journal Article
%A M. Tukhtasinov
%T A linear differential game of pursuit with impulse and integrally constrained controls of the players
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 273-282
%V 22
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a28/
%G ru
%F TIMM_2016_22_3_a28
M. Tukhtasinov. A linear differential game of pursuit with impulse and integrally constrained controls of the players. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 3, pp. 273-282. http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a28/

[1] Chikrii A.A., Matichin I.I., “Lineinye differentsialnye igry s impulsnym upravleniem igrokov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 11:1 (2005), 212–224 | MR

[2] Chikrii A.A., Belousov A.A., “O lineinykh differentsialnykh igrakh s integralnymi ogranicheniyami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15:4 (2009), 290–301

[3] Belousov A.A., “Differentsialnye igry s integralnymi ogranicheniyami i impulsnymi upravleniyami”, Dokl. NAN Ukrainy, 2013, no. 11, 37–42 | Zbl

[4] Krasovskii N.N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 476 pp. | MR

[5] Chikrii A.A., Konfliktno upravlyaemye protsessy, Nauk. Dumka, Kiev, 1992, 384 pp.

[6] Ukhobotov V.I., Troitskii A.A., “Ob odnoi zadache impulsnogo presledovaniya”, Vestn. Yuzhno-Ural. un-ta. Ser. Matematika. Mekhanika. Fizika, 5:2 (2013), 79–87 | Zbl

[7] Ukhobotov V.I., “Vypuklaya igrovaya zadacha impulsnogo presledovaniya vtorogo poryadka”, XII Vserosciiskoe soveschanie po problemam upravleniya, sb. tr., Moskva, 2014, 2089–2095

[8] Kotlyachkova E.V., “K nestatsionarnoi zadache prostogo presledovaniya v klasse impulsnykh strategii”, Izv. In-ta matematiki i informatiki UdGU, 1:45 (2015), 106–113 | Zbl

[9] Chikrii A.A., Chikrii G.Ts., “Matrichnye razreshayuschie funktsii v igrovykh zadachakh dinamiki”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:3 (2014), 324–333 | MR

[10] Filippov A.F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985, 224 pp. | MR