One-sided integral approximation of the characteristic function of an interval by algebraic polynomials
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 3, pp. 265-272 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We give a solution to the problem of one-sided approximation in $L(-1,1)$ of the characteristic function of the interval $(-\sqrt{{3}/{5}},{2}/{5})$ by fifth-degree algebraic polynomials. The corresponding quadrature formula with positive weights is constructed.
Keywords: algebraic polynomials, one-sided approximation, characteristic function of an interval.
@article{TIMM_2016_22_3_a27,
     author = {A. Yu. Torgashova},
     title = {One-sided integral approximation of the characteristic function of an interval by algebraic polynomials},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {265--272},
     year = {2016},
     volume = {22},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a27/}
}
TY  - JOUR
AU  - A. Yu. Torgashova
TI  - One-sided integral approximation of the characteristic function of an interval by algebraic polynomials
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 265
EP  - 272
VL  - 22
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a27/
LA  - ru
ID  - TIMM_2016_22_3_a27
ER  - 
%0 Journal Article
%A A. Yu. Torgashova
%T One-sided integral approximation of the characteristic function of an interval by algebraic polynomials
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 265-272
%V 22
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a27/
%G ru
%F TIMM_2016_22_3_a27
A. Yu. Torgashova. One-sided integral approximation of the characteristic function of an interval by algebraic polynomials. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 3, pp. 265-272. http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a27/

[1] Babenko A.G., Deikalova M.V., Reves S.D., “Odnostoronnie integralnye priblizheniya kharakteristicheskikh funktsii intervalov mnogochlenami na otrezke s vesom”, Tr. In-ta matematiki i mekhaniki UrO RAN, 21:4 (2015), 46–53 | MR

[2] Korneichuk N.P., Ligun A.A., Doronin V.G., Approksimatsiya s ogranicheniyami, Naukova dumka, Kiev, 1982, 252 pp. | MR

[3] Krylov V.I., Priblizhennoe vychislenie integralov, Fizmatlit, M., 1959, 328 pp. | MR

[4] Suetin P.K., Klassicheskie ortogonalnye mnogochleny, Nauka, M., 1976, 327 pp. | MR

[5] Beckermann B., Bustamante J., Martinez-Cruz R., Quesada J.M., “Gaussian, Lobatto and Radau positive quadrature rules with a prescribed abscissa”, Calcolo, 51:2 (2014), 319–328 | DOI | MR | Zbl

[6] Bojanic R., DeVore R., “On polynomials of best one-sided approximation”, Enseign. Math., 2:12 (1966), 139–164 | MR | Zbl

[7] Bustamante J., Martinez-Cruz R., Quesada J.M., “Quasi orthogonal Jacobi polynomials and best one-sided $L_1$ approximation to step functions”, J. Approx. Theory, 198 (2015), 10–23 | DOI | MR | Zbl