On Coxeter graphs of groups with symplectic 3-transpositions
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 3, pp. 251-258 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We find and describe minimal systems of 3-transpositions that generate the groups $Sp_{2n}(2)$ and $O^\pm_{2n}(2)$ whose Coxeter graphs are trees.
Keywords: groups with symplectic 3-transpositions, defining relations, Coxeter graphs and groups.
@article{TIMM_2016_22_3_a25,
     author = {A. I. Sozutov and V. M. Sinitsin},
     title = {On {Coxeter} graphs of groups with symplectic 3-transpositions},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {251--258},
     year = {2016},
     volume = {22},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a25/}
}
TY  - JOUR
AU  - A. I. Sozutov
AU  - V. M. Sinitsin
TI  - On Coxeter graphs of groups with symplectic 3-transpositions
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 251
EP  - 258
VL  - 22
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a25/
LA  - ru
ID  - TIMM_2016_22_3_a25
ER  - 
%0 Journal Article
%A A. I. Sozutov
%A V. M. Sinitsin
%T On Coxeter graphs of groups with symplectic 3-transpositions
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 251-258
%V 22
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a25/
%G ru
%F TIMM_2016_22_3_a25
A. I. Sozutov; V. M. Sinitsin. On Coxeter graphs of groups with symplectic 3-transpositions. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 3, pp. 251-258. http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a25/

[1] M. Aschbacher, 3-transposition groups, Cambridge University Press, Cambridge, 1997, 260 pp. | MR | Zbl

[2] Hall J.I., “Symplectic geometry and mapping class groups”, Geometrical combinatorics, Milton Keynes, 1984, Research Notes in Mathematics, 114, Pitman, London, 1984, 21–33 | MR

[3] Hall J.I., “Graphs, geometry, 3-transpositions, and symplectic $F_2$-transvection groups”, Proc. London Math. Soc. (Ser. 3), 58:1 (1989), 89–111 | DOI | MR | Zbl

[4] Sozutov A.I., “O gruppakh tipa $\Sigma _4$, porozhdennykh 3-transpozitsiyami”, Sib. mat. zhurn., 33:1 (1992), 140–149 | MR | Zbl

[5] Sozutov A.I., Kuznetsov A.A., Sinitsin V.M., “O sistemakh porozhdayuschikh nekotorykh grupp s 3-transpozitsiyami”, Sib. elektron. mat. izv., 10 (2013), 285–301 | MR | Zbl

[6] Burbaki N., Gruppy i algebry Li, v. VI, Gruppy, porozhdennye otrazheniyami, Mir, M., 1972, 334 pp. | MR

[7] Sozutov A.I., Sinitsin V.M., “O grafakh Kokstera grupp s simplekticheskimi 3-transpozitsiyami”, Tez. dokl. mezhdunar. konf. “Maltsevskie chteniya”, tez. dokl., Novosibirsk, 2014, 77

[8] Sozutov A.I., Aleksandrova I.O., “O grafakh s vershinami dvukh tsvetov i gruppakh s 3-transpozitsiyami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 22:1 (2016), 257–262 | MR

[9] Kleidman P.B., Liebeck M.W., The subgroups structure of the finite classical groups, Cambridge University Press, Cambridge, 1990, 304 pp. | MR

[10] Gorenstein D., Konechnye prostye gruppy. Vvedenie v ikh klassifikatsiyu, Mir, M., 1985, 352 pp. | MR