Mots-clés : optimal correction
@article{TIMM_2016_22_3_a23,
author = {V. D. Skarin},
title = {On the choice of parameters in the residual method for optimal correction of improper problems of convex optimization},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {231--243},
year = {2016},
volume = {22},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a23/}
}
TY - JOUR AU - V. D. Skarin TI - On the choice of parameters in the residual method for optimal correction of improper problems of convex optimization JO - Trudy Instituta matematiki i mehaniki PY - 2016 SP - 231 EP - 243 VL - 22 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a23/ LA - ru ID - TIMM_2016_22_3_a23 ER -
%0 Journal Article %A V. D. Skarin %T On the choice of parameters in the residual method for optimal correction of improper problems of convex optimization %J Trudy Instituta matematiki i mehaniki %D 2016 %P 231-243 %V 22 %N 3 %U http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a23/ %G ru %F TIMM_2016_22_3_a23
V. D. Skarin. On the choice of parameters in the residual method for optimal correction of improper problems of convex optimization. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 3, pp. 231-243. http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a23/
[1] Skarin V.D., “O primenenii metoda nevyazki dlya korrektsii protivorechivykh zadach vypuklogo programmirovaniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:2 (2014), 268–276
[2] Vasilev F.P., Metody optimizatsii, Kn. 1, 2, MTsNMO, M., 2011, 1056 pp.
[3] Eremin I.I., Mazurov V.D., Astafev N.N., Nesobstvennye zadachi lineinogo i vypuklogo programmirovaniya, Nauka, M., 1983, 336 pp. | MR
[4] Erokhin V.I., “Matrichnaya korrektsiya dvoistvennoi pary nesobstvennykh zadach lineinogo programmirovaniya”, Zhurn. vychisl. matematiki i mat. fiziki, 47:4 (2007), 587–601 | MR | Zbl
[5] Popov L.D., “Primenenie barernykh funktsii dlya optimalnoi korrektsii nesobstvennykh zadach lineinogo programmirovaniya 1-go roda”, Avtomatika i telemekhanika, 2012, no. 3, 3–11 | Zbl
[6] Leon T., Liern V., “A fuzzy method to repair infeasibility in linear constrained problems”, Fuzzy Set and Systems, 122:2 (2001), 237–243 | DOI | MR | Zbl
[7] Skarin V.D., “O primenenii odnogo metoda regulyarizatsii dlya korrektsii nesobstvennykh zadach vypuklogo programmirovaniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18:3 (2012), 230–241 | MR
[8] Chinneck J.W., Dravnieks E.W., “Locating minimal infeasible constraint sets in linear programs”, ORSA J. on Computing, 3:2 (1991), 157–168 | DOI | Zbl
[9] Ben-Tal A., Nemirovski A., “Robust solutions of linear programming problems contaminated with uncertain data”, Math. Progr., 88:3 (2000), 411–424 | DOI | MR | Zbl
[10] De Groen P., “An introduction to total least squares”, Niew Archief voor Wiskunde, 14:2 (1996), 237–254 | MR
[11] Dax A., “The smallest correction of an inconsistent system of linear inequalities”, Optimization and Engineering, 2 (2001), 349–359 | DOI | Zbl
[12] Amaral P., Barahona P., “Connections between the total least squares and the correction of an infeasible system of linear inequalities”, Linear Algebra Appl., 395 (2005), 191–210 | DOI | MR | Zbl
[13] Tikhonov A.N., Arsenin V.Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979, 288 pp. | MR
[14] Bakushinskii A.B., Goncharskii A.V., Iterativnye metody resheniya nekorrektnykh zadach, Nauka, M., 1989, 128 pp. | MR
[15] Kaltenbacher B., Neubauer A., Scherzer O., Iterative regularization methods in nonlinear ill-posed problems, W. de Gruyter, Berlin; N. Y., 2008, 194 pp. | MR
[16] Evtushenko Yu.G., Metody resheniya ekstremalnykh zadach i ikh primenenie v sistemakh optimizatsii, Nauka, M., 1982, 432 pp. | MR
[17] Popov L.D., “Ob adaptatsii metoda nagruzhennogo funktsionala k nesobstvennym zadacham matematicheskogo programmirovaniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:2 (2013), 247–255 | MR
[18] Skarin V.D., “O metode barernykh funktsii i algoritmakh korrektsii nesobstvennykh zadach vypuklogo programmirovaniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14:2 (2008), 115–128 | MR | Zbl