On the choice of parameters in the residual method for optimal correction of improper problems of convex optimization
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 3, pp. 231-243 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For the correction of improper problems of convex programming, the residual method is used,which is the standard regularization procedure for ill-defined optimization models.We propose new iterative implementations of the residual method, in whichthe constraints of the problem are included by means of penalty functions.New convergence conditions are established for algorithmic schemes,and bounds are found for the approximation error.
Keywords: convex programming, improper problem, residual method, penalty function methods.
Mots-clés : optimal correction
@article{TIMM_2016_22_3_a23,
     author = {V. D. Skarin},
     title = {On the choice of parameters in the residual method for optimal correction of improper problems of convex optimization},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {231--243},
     year = {2016},
     volume = {22},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a23/}
}
TY  - JOUR
AU  - V. D. Skarin
TI  - On the choice of parameters in the residual method for optimal correction of improper problems of convex optimization
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 231
EP  - 243
VL  - 22
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a23/
LA  - ru
ID  - TIMM_2016_22_3_a23
ER  - 
%0 Journal Article
%A V. D. Skarin
%T On the choice of parameters in the residual method for optimal correction of improper problems of convex optimization
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 231-243
%V 22
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a23/
%G ru
%F TIMM_2016_22_3_a23
V. D. Skarin. On the choice of parameters in the residual method for optimal correction of improper problems of convex optimization. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 3, pp. 231-243. http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a23/

[1] Skarin V.D., “O primenenii metoda nevyazki dlya korrektsii protivorechivykh zadach vypuklogo programmirovaniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:2 (2014), 268–276

[2] Vasilev F.P., Metody optimizatsii, Kn. 1, 2, MTsNMO, M., 2011, 1056 pp.

[3] Eremin I.I., Mazurov V.D., Astafev N.N., Nesobstvennye zadachi lineinogo i vypuklogo programmirovaniya, Nauka, M., 1983, 336 pp. | MR

[4] Erokhin V.I., “Matrichnaya korrektsiya dvoistvennoi pary nesobstvennykh zadach lineinogo programmirovaniya”, Zhurn. vychisl. matematiki i mat. fiziki, 47:4 (2007), 587–601 | MR | Zbl

[5] Popov L.D., “Primenenie barernykh funktsii dlya optimalnoi korrektsii nesobstvennykh zadach lineinogo programmirovaniya 1-go roda”, Avtomatika i telemekhanika, 2012, no. 3, 3–11 | Zbl

[6] Leon T., Liern V., “A fuzzy method to repair infeasibility in linear constrained problems”, Fuzzy Set and Systems, 122:2 (2001), 237–243 | DOI | MR | Zbl

[7] Skarin V.D., “O primenenii odnogo metoda regulyarizatsii dlya korrektsii nesobstvennykh zadach vypuklogo programmirovaniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18:3 (2012), 230–241 | MR

[8] Chinneck J.W., Dravnieks E.W., “Locating minimal infeasible constraint sets in linear programs”, ORSA J. on Computing, 3:2 (1991), 157–168 | DOI | Zbl

[9] Ben-Tal A., Nemirovski A., “Robust solutions of linear programming problems contaminated with uncertain data”, Math. Progr., 88:3 (2000), 411–424 | DOI | MR | Zbl

[10] De Groen P., “An introduction to total least squares”, Niew Archief voor Wiskunde, 14:2 (1996), 237–254 | MR

[11] Dax A., “The smallest correction of an inconsistent system of linear inequalities”, Optimization and Engineering, 2 (2001), 349–359 | DOI | Zbl

[12] Amaral P., Barahona P., “Connections between the total least squares and the correction of an infeasible system of linear inequalities”, Linear Algebra Appl., 395 (2005), 191–210 | DOI | MR | Zbl

[13] Tikhonov A.N., Arsenin V.Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979, 288 pp. | MR

[14] Bakushinskii A.B., Goncharskii A.V., Iterativnye metody resheniya nekorrektnykh zadach, Nauka, M., 1989, 128 pp. | MR

[15] Kaltenbacher B., Neubauer A., Scherzer O., Iterative regularization methods in nonlinear ill-posed problems, W. de Gruyter, Berlin; N. Y., 2008, 194 pp. | MR

[16] Evtushenko Yu.G., Metody resheniya ekstremalnykh zadach i ikh primenenie v sistemakh optimizatsii, Nauka, M., 1982, 432 pp. | MR

[17] Popov L.D., “Ob adaptatsii metoda nagruzhennogo funktsionala k nesobstvennym zadacham matematicheskogo programmirovaniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:2 (2013), 247–255 | MR

[18] Skarin V.D., “O metode barernykh funktsii i algoritmakh korrektsii nesobstvennykh zadach vypuklogo programmirovaniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14:2 (2008), 115–128 | MR | Zbl