On the $\pi$-length of locally finite $\pi$-separable groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 3, pp. 226-230
Cet article a éte moissonné depuis la source Math-Net.Ru
We prove the $\pi$-separability of a locally finite group $G$ in which all finite subgroups are $\pi$-separable and their $\pi$-lengths are bounded in total.
Keywords:
locally finite groups, $\pi$-separable groups, $\pi$-length of a group.
@article{TIMM_2016_22_3_a22,
author = {Z. B. Selyaeva},
title = {On the $\pi$-length of locally finite $\pi$-separable groups},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {226--230},
year = {2016},
volume = {22},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a22/}
}
Z. B. Selyaeva. On the $\pi$-length of locally finite $\pi$-separable groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 3, pp. 226-230. http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a22/
[1] Zhurtov A.Kh., Selyaeva Z.B., “O lokalno konechnykh $\pi$-razdelimykh gruppakh”, Vladikavkaz. mat. zhurn., 17:2 (2015), 16–22
[2] Gorenstein D., Finite groups, Chelsea, N.Y., 1980, 549 pp. | MR | Zbl
[3] Huppert B., Endliche gruppen I, Springer-Verlag, Berlin etc., 1979, 811 pp. | MR | Zbl
[4] Feit W., Thompson J.G., “Solvability of groups of odd order”, Pacific J. Math., 13:3 (1963), 775–1029 | DOI | MR | Zbl