On the $\pi$-length of locally finite $\pi$-separable groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 3, pp. 226-230 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We prove the $\pi$-separability of a locally finite group $G$ in which all finite subgroups are $\pi$-separable and their $\pi$-lengths are bounded in total.
Keywords: locally finite groups, $\pi$-separable groups, $\pi$-length of a group.
@article{TIMM_2016_22_3_a22,
     author = {Z. B. Selyaeva},
     title = {On the $\pi$-length of locally finite $\pi$-separable groups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {226--230},
     year = {2016},
     volume = {22},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a22/}
}
TY  - JOUR
AU  - Z. B. Selyaeva
TI  - On the $\pi$-length of locally finite $\pi$-separable groups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 226
EP  - 230
VL  - 22
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a22/
LA  - ru
ID  - TIMM_2016_22_3_a22
ER  - 
%0 Journal Article
%A Z. B. Selyaeva
%T On the $\pi$-length of locally finite $\pi$-separable groups
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 226-230
%V 22
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a22/
%G ru
%F TIMM_2016_22_3_a22
Z. B. Selyaeva. On the $\pi$-length of locally finite $\pi$-separable groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 3, pp. 226-230. http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a22/

[1] Zhurtov A.Kh., Selyaeva Z.B., “O lokalno konechnykh $\pi$-razdelimykh gruppakh”, Vladikavkaz. mat. zhurn., 17:2 (2015), 16–22

[2] Gorenstein D., Finite groups, Chelsea, N.Y., 1980, 549 pp. | MR | Zbl

[3] Huppert B., Endliche gruppen I, Springer-Verlag, Berlin etc., 1979, 811 pp. | MR | Zbl

[4] Feit W., Thompson J.G., “Solvability of groups of odd order”, Pacific J. Math., 13:3 (1963), 775–1029 | DOI | MR | Zbl