Open ultrafilters and separability with the use of the operation of closure
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 3, pp. 212-225 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study ultrafilters of topologies as well as sets of ultrafilters that each time dominate the open neighborhood filter of some fixed point in a topological space. The sets of ultrafilters are considered as “enlarged points” of the original space. We study conditions that provide the discernibility of (enlarged) “points” of this type. We use nontraditional separability axioms and study their connection with the known axioms $T_0$, $T_1$, and $T_2.$
Keywords: closure, neighborhood, ultrafilter.
@article{TIMM_2016_22_3_a21,
     author = {E. G. Pytkeev and A. G. Chentsov},
     title = {Open ultrafilters and separability with the use of the operation of closure},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {212--225},
     year = {2016},
     volume = {22},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a21/}
}
TY  - JOUR
AU  - E. G. Pytkeev
AU  - A. G. Chentsov
TI  - Open ultrafilters and separability with the use of the operation of closure
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 212
EP  - 225
VL  - 22
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a21/
LA  - ru
ID  - TIMM_2016_22_3_a21
ER  - 
%0 Journal Article
%A E. G. Pytkeev
%A A. G. Chentsov
%T Open ultrafilters and separability with the use of the operation of closure
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 212-225
%V 22
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a21/
%G ru
%F TIMM_2016_22_3_a21
E. G. Pytkeev; A. G. Chentsov. Open ultrafilters and separability with the use of the operation of closure. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 3, pp. 212-225. http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a21/

[1] Aleksandrov P.S., Vvedenie v teoriyu mnozhestv i obschuyu topologiyu, Editorial URSS, M., 2004, 368 pp.

[2] Pytkeev E.G., Chentsov A.G., “K voprosu o strukture ultrafiltrov i svoistvakh, svyazannykh so skhodimostyu v topologicheskikh prostranstvakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:2 (2014), 250–267 | MR

[3] Chentsov A.G., Pytkeev E.G., “Nekotorye topologicheskie konstruktsii rasshirenii abstraktnykh zadach o dostizhimosti”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:4 (2014), 312–329 | MR

[4] Bulinskii A.V., Shiryaev A.N., Teoriya sluchainykh protsessov, Fizmatlit, M., 2005, 402 pp.

[5] Chentsov A.G., “Filtry i ultrafiltry v konstruktsiyakh mnozhestv prityazheniya”, Vestn. Udmurt. un-ta (Matematika, mekhanika, kompyuternye nauki.), 2011, no. 1, 113–142 | Zbl

[6] Engelking R., Obschaya topologiya, Mir, M., 1986, 751 pp. | MR

[7] Iliadis S.D., Fomin S.V., “Metod tsentrirovannykh sistem v teorii topologicheskikh prostranstv”, Uspekhi mat. nauk, 21:4 (1966), 47–76 | MR | Zbl

[8] Burbaki N., Obschaya topologiya. Osnovnye struktury, Nauka, M., 1968, 272 pp. | MR

[9] Aleksandryan R.A., Mirzakhanyan E.A., Obschaya topologiya, ucheb. posobie dlya vuzov, Vyssh. shk., M., 1979, 336 pp.

[10] Pytkeev E.G., Chentsov A.G., “Nekotorye svoistva otkrytykh ultrafiltrov”, Izv. In-ta matematiki i informatiki Udmurt. un-ta, 2015, no. 2(46), 140–148 | Zbl

[11] Chentsov A.G., Morina S.I., Extensions and relaxations, Kluwer Acad. Publ., Dordrecht; Boston; London, 2002, 408 pp. | MR | Zbl