Open ultrafilters and separability with the use of the operation of closure
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 3, pp. 212-225
Voir la notice de l'article provenant de la source Math-Net.Ru
We study ultrafilters of topologies as well as sets of ultrafilters that each time dominate the open neighborhood filter of some fixed point in a topological space. The sets of ultrafilters are considered as “enlarged points” of the original space. We study conditions that provide the discernibility of (enlarged) “points” of this type. We use nontraditional separability axioms and study their connection with the known axioms $T_0$, $T_1$, and $T_2.$
Keywords:
closure, neighborhood, ultrafilter.
@article{TIMM_2016_22_3_a21,
author = {E. G. Pytkeev and A. G. Chentsov},
title = {Open ultrafilters and separability with the use of the operation of closure},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {212--225},
publisher = {mathdoc},
volume = {22},
number = {3},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a21/}
}
TY - JOUR AU - E. G. Pytkeev AU - A. G. Chentsov TI - Open ultrafilters and separability with the use of the operation of closure JO - Trudy Instituta matematiki i mehaniki PY - 2016 SP - 212 EP - 225 VL - 22 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a21/ LA - ru ID - TIMM_2016_22_3_a21 ER -
E. G. Pytkeev; A. G. Chentsov. Open ultrafilters and separability with the use of the operation of closure. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 3, pp. 212-225. http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a21/