Duality and correction of inconsistent constraints for improper linear programming problems
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 3, pp. 200-211 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We continue the study of approximation properties of alternative duality schemes for improper problems of linear programming. The schemes are based on the use of the classical Lagrange function regularized simultaneously in direct and dual variables. The results on the connection of its saddle points with the lexicographic correction of the right-hand sides of constraints in improper problems of the first and second kind are transferred to a more general type of improperness. Convergence theorems are presented and an informal interpretation is given for the obtained generalized solution.
Keywords: linear programming, duality, improper problems, generalized solutions, regularization, penalty methods.
@article{TIMM_2016_22_3_a20,
     author = {L. D. Popov and V. D. Skarin},
     title = {Duality and correction of inconsistent constraints for improper linear programming problems},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {200--211},
     year = {2016},
     volume = {22},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a20/}
}
TY  - JOUR
AU  - L. D. Popov
AU  - V. D. Skarin
TI  - Duality and correction of inconsistent constraints for improper linear programming problems
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 200
EP  - 211
VL  - 22
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a20/
LA  - ru
ID  - TIMM_2016_22_3_a20
ER  - 
%0 Journal Article
%A L. D. Popov
%A V. D. Skarin
%T Duality and correction of inconsistent constraints for improper linear programming problems
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 200-211
%V 22
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a20/
%G ru
%F TIMM_2016_22_3_a20
L. D. Popov; V. D. Skarin. Duality and correction of inconsistent constraints for improper linear programming problems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 3, pp. 200-211. http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a20/

[1] Eremin I.I., “Dvoistvennost dlya nesobstvennykh zadach lineinogo i vypuklogo programmirovaniya”, Dokl. AN SSSR, 256:2 (1981), 272–276 | MR | Zbl

[2] Eremin I.I., Mazurov V.D., Astafev N.N., Nesobstvennye zadachi lineinogo i vypuklogo programmirovaniya, Nauka, M., 1983, 336 pp. | MR

[3] Tikhonov A.N., Arsenin V.Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979, 285 pp. | MR

[4] Vasilev F.P., Metody resheniya ekstremalnykh zadach, Nauka, M., 1981, 400 pp. | MR

[5] Skarin V.D., “Ob odnom podkhode k analizu nesobstvennykh zadach lineinogo programmirovaniya”, Zhurn. vychisl. matematiki i mat. fiziki, 26:3 (1986), 439–448 | MR | Zbl

[6] Skarin V.D., “O metode regulyarizatsii dlya protivorechivykh zadach vypuklogo programmirovaniya”, Izv. vuzov. Matematika, 1995, no. 12, 81–88 | MR | Zbl

[7] Eremin I.I., “O zadachakh posledovatelnogo programmirovaniya”, Sib. mat. zhurn., 14:1 (1973), 124–129

[8] Popov L.D., “Leksikograficheskie variatsionnye neravenstva i nekotorye prilozheniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 8:1 (2002), 103–115

[9] Popov L.D.,Skarin V.D., “Leksikograficheskaya regulyarizatsiya i dvoistvennost dlya nesobstvennykh zadach lineinogo programmirovaniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 21:3 (2015), 279–291 | MR

[10] Guddat J., “Stability in convex quadratic programming”, Mathematische Operationsforschung und Statistik, 8 (1976), 223–245 | DOI | MR

[11] Dorn W.S., “Duality in quadratic programming”, Buart. Appl. Math., 1960, no. 18, 407–413 | MR | Zbl