On automorphisms of a distance-regular graph with intersection array $\{99,84,1;1,12,99\}$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 3, pp. 23-30
Cet article a éte moissonné depuis la source Math-Net.Ru
We find possible orders and fixed point subgraphs of a hypothetical distance-regular graph with intersection array $\{99,84,1;1,12,99\}$. It is shown that, if $\Gamma$ is a vertex-symmetric graph with intersection array $\{99,84,1;1, 12,99\}$, then its automorphism group is a $\{2,3,5\}$-group.
Keywords:
distance-regular graph, automorphism of a graph.
@article{TIMM_2016_22_3_a2,
author = {I. N. Belousov},
title = {On automorphisms of a distance-regular graph with intersection array $\{99,84,1;1,12,99\}$},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {23--30},
year = {2016},
volume = {22},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a2/}
}
TY - JOUR
AU - I. N. Belousov
TI - On automorphisms of a distance-regular graph with intersection array $\{99,84,1;1,12,99\}$
JO - Trudy Instituta matematiki i mehaniki
PY - 2016
SP - 23
EP - 30
VL - 22
IS - 3
UR - http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a2/
LA - ru
ID - TIMM_2016_22_3_a2
ER -
I. N. Belousov. On automorphisms of a distance-regular graph with intersection array $\{99,84,1;1,12,99\}$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 3, pp. 23-30. http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a2/
[1] Makhnev A.A., “O grafakh, v kotorykh okrestnosti vershin silno regulyarny s parametrami (99,14,1,2)”, Dokl. RAN, 453:6 (2013), 606–609 | DOI | MR | Zbl
[2] Cameron P., Permutation Groups, Cambridge Univ. Press, London, 1999, 220 pp. | MR | Zbl
[3] Gavrilyuk A.L., Makhnev A.A., “Ob avtomorfizmakh distantsionno regulyarnogo grafa s massivom peresechenii $\{56,45,1;1,9,56\}$”, Dokl. RAN, 432:5 (2010), 583–587 | MR | Zbl
[4] Makhnev A.A., Minakova I.M., “Ob avtomorfizmakh grafov s $\lambda=1$, $\mu=2$”, Diskret. matematika, 16:1 (2004), 95–104 | DOI | MR | Zbl
[5] Zavarnitsine A.V., “Finite simple groups with narrow prime spectrum”, Sibirean Electr. Math. Reports, 6 (2009), 1–12 | MR | Zbl