Nonabelian composition factors of a finite group whose maximal subgroups of odd indices are Hall subgroups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 3, pp. 178-187 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We obtain a description of nonabelian composition factors of a finite nonsolvable group in which any maximal subgroup of odd index is a Hall subgroup.
Keywords: finite group, maximal subgroup, Hall subgroup, composition factor, odd index.
@article{TIMM_2016_22_3_a17,
     author = {N. V. Maslova and D. O. Revin},
     title = {Nonabelian composition factors of a finite group whose maximal subgroups of odd indices are {Hall} subgroups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {178--187},
     year = {2016},
     volume = {22},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a17/}
}
TY  - JOUR
AU  - N. V. Maslova
AU  - D. O. Revin
TI  - Nonabelian composition factors of a finite group whose maximal subgroups of odd indices are Hall subgroups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 178
EP  - 187
VL  - 22
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a17/
LA  - ru
ID  - TIMM_2016_22_3_a17
ER  - 
%0 Journal Article
%A N. V. Maslova
%A D. O. Revin
%T Nonabelian composition factors of a finite group whose maximal subgroups of odd indices are Hall subgroups
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 178-187
%V 22
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a17/
%G ru
%F TIMM_2016_22_3_a17
N. V. Maslova; D. O. Revin. Nonabelian composition factors of a finite group whose maximal subgroups of odd indices are Hall subgroups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 3, pp. 178-187. http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a17/

[1] Vdovin E.P., Revin D.O., “Teoremy silovskogo tipa”, Uspekhi mat. nauk, 66:5 (2011), 3–46 | DOI | MR | Zbl

[2] Kondratev A.S., Gruppy i algebry Li, IMM UrO RAN, Ekaterinburg, 2009, 310 pp.

[3] Kondratev A.S., “Normalizatory silovskikh 2-podgrupp v konechnykh prostykh gruppakh”, Mat. zametki, 78:3 (2005), 368–376 | DOI | MR | Zbl

[4] Kondratev A.S., “Podgruppy konechnykh grupp Shevalle”, Uspekhi mat. nauk, 41:1 (1986), 57–96 | MR | Zbl

[5] Kourovskaya tetrad. Nereshennye voprosy teorii grupp, Izd. 18-e, dop., In-t matematiki SO RAN, Novosibirsk, 2014, 253 pp. URL: http://math.nsc.ru/alglog/18kt.pdf

[6] Maslova N.V., “Klassifikatsiya maksimalnykh podgrupp nechetnogo indeksa v konechnykh prostykh klassicheskikh gruppakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14:4 (2008), 100–118

[7] Maslova N.V., “Klassifikatsiya maksimalnykh podgrupp nechetnogo indeksa v konechnykh gruppakh so znakoperemennym tsokolem”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16:3 (2010), 182–184

[8] Maslova N.V., “Maksimalnye podgruppy nechetnogo indeksa v konechnykh gruppakh s prostym lineinym, unitarnym ili simplekticheskim tsokolem”, Algebra i logika, 50:2 (2011), 189–208 | MR | Zbl

[9] Maslova N.V., “Neabelevy kompozitsionnye faktory konechnoi gruppy, vse maksimalnye podgruppy kotoroi khollovy”, Sib. mat. zhurn., 53:5 (2012), 1065–1076 | MR | Zbl

[10] Maslova N.V., Revin D.O., “Konechnye gruppy, vse maksimalnye podgruppy kotorykh khollovy”, Mat. tr., 15:2 (2012), 105–126 | MR | Zbl

[11] Monakhov V.S., “Konechnye $\pi$-razreshimye gruppy s khollovymi maksimalnymi podgruppami”, Mat. zametki, 84:3 (2008), 390–394 | DOI | MR | Zbl

[12] Revin D.O., “Khollovy $\pi$-podgruppy konechnykh grupp Shevalle, kharakteristika kotorykh prinadlezhit $\pi$”, Mat. tr., 2:1 (1999), 160–208 | MR | Zbl

[13] J.H. Conway [et. al.], Atlas of finite groups, Clarendon Press, Oxford, 1985, 252 pp. | MR | Zbl

[14] Bray J.N., Holt D.F., Roney-Dougal C.M., The maximal subgroups of the low-dimensional finite classical groups, Cambridge Univ. Press, Cambridge, 2013, 438 pp. | MR | Zbl

[15] Giudici M., “Maximal subgroups of almost simple groups with socle $PSL(2, q)$”, 2007, 11 pp., arXiv: http://arxiv.org/pdf/math.GR/0703685.pdf

[16] Hall P., “Theorems like Sylow's”, Proc. Lond. Math. Soc. (3), 6:22 (1956), 286–304 | DOI | MR | Zbl

[17] Kleidman P., Liebeck M., The subgroup structure of the finite classical groups, Cambridge University Press, Cambridge, 1990, 303 pp. | MR | Zbl

[18] Liebeck M.W., Saxl J., “The primitive permutation groups of odd degree”, J. London Math. Soc (2), 31:2 (1985), 250–264 | DOI | MR | Zbl

[19] Oshima T., “A classification of subsystems of a root system”, 2007, 47 pp., arXiv: http://arxiv.org/pdf/math/0611904v4.pdf

[20] Revin D.O., Vdovin E.P., “On the number of classes of conjugate Hall subgroups in finite simple groups”, J. Algebra, 324 (2010), 3614–3652 | DOI | MR | Zbl

[21] Thompson J.G., “Hall subgroups of the symmetric groups”, J. Comb. Theory, 1 (1966), 271–279 | DOI | MR | Zbl