@article{TIMM_2016_22_3_a17,
author = {N. V. Maslova and D. O. Revin},
title = {Nonabelian composition factors of a finite group whose maximal subgroups of odd indices are {Hall} subgroups},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {178--187},
year = {2016},
volume = {22},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a17/}
}
TY - JOUR AU - N. V. Maslova AU - D. O. Revin TI - Nonabelian composition factors of a finite group whose maximal subgroups of odd indices are Hall subgroups JO - Trudy Instituta matematiki i mehaniki PY - 2016 SP - 178 EP - 187 VL - 22 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a17/ LA - ru ID - TIMM_2016_22_3_a17 ER -
%0 Journal Article %A N. V. Maslova %A D. O. Revin %T Nonabelian composition factors of a finite group whose maximal subgroups of odd indices are Hall subgroups %J Trudy Instituta matematiki i mehaniki %D 2016 %P 178-187 %V 22 %N 3 %U http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a17/ %G ru %F TIMM_2016_22_3_a17
N. V. Maslova; D. O. Revin. Nonabelian composition factors of a finite group whose maximal subgroups of odd indices are Hall subgroups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 3, pp. 178-187. http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a17/
[1] Vdovin E.P., Revin D.O., “Teoremy silovskogo tipa”, Uspekhi mat. nauk, 66:5 (2011), 3–46 | DOI | MR | Zbl
[2] Kondratev A.S., Gruppy i algebry Li, IMM UrO RAN, Ekaterinburg, 2009, 310 pp.
[3] Kondratev A.S., “Normalizatory silovskikh 2-podgrupp v konechnykh prostykh gruppakh”, Mat. zametki, 78:3 (2005), 368–376 | DOI | MR | Zbl
[4] Kondratev A.S., “Podgruppy konechnykh grupp Shevalle”, Uspekhi mat. nauk, 41:1 (1986), 57–96 | MR | Zbl
[5] Kourovskaya tetrad. Nereshennye voprosy teorii grupp, Izd. 18-e, dop., In-t matematiki SO RAN, Novosibirsk, 2014, 253 pp. URL: http://math.nsc.ru/alglog/18kt.pdf
[6] Maslova N.V., “Klassifikatsiya maksimalnykh podgrupp nechetnogo indeksa v konechnykh prostykh klassicheskikh gruppakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14:4 (2008), 100–118
[7] Maslova N.V., “Klassifikatsiya maksimalnykh podgrupp nechetnogo indeksa v konechnykh gruppakh so znakoperemennym tsokolem”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16:3 (2010), 182–184
[8] Maslova N.V., “Maksimalnye podgruppy nechetnogo indeksa v konechnykh gruppakh s prostym lineinym, unitarnym ili simplekticheskim tsokolem”, Algebra i logika, 50:2 (2011), 189–208 | MR | Zbl
[9] Maslova N.V., “Neabelevy kompozitsionnye faktory konechnoi gruppy, vse maksimalnye podgruppy kotoroi khollovy”, Sib. mat. zhurn., 53:5 (2012), 1065–1076 | MR | Zbl
[10] Maslova N.V., Revin D.O., “Konechnye gruppy, vse maksimalnye podgruppy kotorykh khollovy”, Mat. tr., 15:2 (2012), 105–126 | MR | Zbl
[11] Monakhov V.S., “Konechnye $\pi$-razreshimye gruppy s khollovymi maksimalnymi podgruppami”, Mat. zametki, 84:3 (2008), 390–394 | DOI | MR | Zbl
[12] Revin D.O., “Khollovy $\pi$-podgruppy konechnykh grupp Shevalle, kharakteristika kotorykh prinadlezhit $\pi$”, Mat. tr., 2:1 (1999), 160–208 | MR | Zbl
[13] J.H. Conway [et. al.], Atlas of finite groups, Clarendon Press, Oxford, 1985, 252 pp. | MR | Zbl
[14] Bray J.N., Holt D.F., Roney-Dougal C.M., The maximal subgroups of the low-dimensional finite classical groups, Cambridge Univ. Press, Cambridge, 2013, 438 pp. | MR | Zbl
[15] Giudici M., “Maximal subgroups of almost simple groups with socle $PSL(2, q)$”, 2007, 11 pp., arXiv: http://arxiv.org/pdf/math.GR/0703685.pdf
[16] Hall P., “Theorems like Sylow's”, Proc. Lond. Math. Soc. (3), 6:22 (1956), 286–304 | DOI | MR | Zbl
[17] Kleidman P., Liebeck M., The subgroup structure of the finite classical groups, Cambridge University Press, Cambridge, 1990, 303 pp. | MR | Zbl
[18] Liebeck M.W., Saxl J., “The primitive permutation groups of odd degree”, J. London Math. Soc (2), 31:2 (1985), 250–264 | DOI | MR | Zbl
[19] Oshima T., “A classification of subsystems of a root system”, 2007, 47 pp., arXiv: http://arxiv.org/pdf/math/0611904v4.pdf
[20] Revin D.O., Vdovin E.P., “On the number of classes of conjugate Hall subgroups in finite simple groups”, J. Algebra, 324 (2010), 3614–3652 | DOI | MR | Zbl
[21] Thompson J.G., “Hall subgroups of the symmetric groups”, J. Comb. Theory, 1 (1966), 271–279 | DOI | MR | Zbl