Conditions for the irreducibility and primitivity of monotone subhomogeneous mappings
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 3, pp. 169-177 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We present necessary and sufficient conditions for the local irreducibility of monotone subhomogeneous transformations of the cone $\mathbb{R}_+^q$. The main attention is paid to the notion of irreducibility of a mapping at zero, which is a weakening of the classical notion of irreducibility of a mapping. We analyze the properties of monotone first-degree positively homogeneous mappings irreducible at zero and of subhomogeneous mappings. Necessary and sufficient conditions are obtained for the primitivity of such mappings.
Keywords: first-degree positively homogeneous mapping, subhomogeneous mapping, irreducible mapping, irreducible at zero mapping, primitive mapping.
@article{TIMM_2016_22_3_a16,
     author = {V. D. Mazurov and A. I. Smirnov},
     title = {Conditions for the irreducibility and primitivity of monotone subhomogeneous mappings},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {169--177},
     year = {2016},
     volume = {22},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a16/}
}
TY  - JOUR
AU  - V. D. Mazurov
AU  - A. I. Smirnov
TI  - Conditions for the irreducibility and primitivity of monotone subhomogeneous mappings
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 169
EP  - 177
VL  - 22
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a16/
LA  - ru
ID  - TIMM_2016_22_3_a16
ER  - 
%0 Journal Article
%A V. D. Mazurov
%A A. I. Smirnov
%T Conditions for the irreducibility and primitivity of monotone subhomogeneous mappings
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 169-177
%V 22
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a16/
%G ru
%F TIMM_2016_22_3_a16
V. D. Mazurov; A. I. Smirnov. Conditions for the irreducibility and primitivity of monotone subhomogeneous mappings. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 3, pp. 169-177. http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a16/

[1] Nikaido Kh., Vypuklye struktury i matematicheskaya ekonomika, Mir, M., 1972, 518 pp.

[2] Smirnov A.I., Kvazivognutye otobrazheniya v nekotorykh modelyakh evolyutsioniruyuschikh sistem, dis.. kand. fiz.-mat. nauk, IMM UNTs AN SSSR, Sverdlovsk, 1983, 136 pp.

[3] Lemmens B., Nussbaum R.D., Nonlinear Perron - Frobenius theory, Cambridge Tracts in Math., 189, Cambridge Univ. Press, Cambridge, 2012, 323 pp. | MR | Zbl

[4] Krause U., Positive dynamical systems in discrete time: theory, models and applications, Walter de Gruyter GmbH, Berlin etc., 2015, 363 pp. | MR

[5] Pallaschke D., Rolewicz S., Foundation of mathematical optimization. Convex analysis without linearity, Math. Appl., 388, Kluwer Acad. Publ., Dordrecht etc., 1997, 582 pp. | MR

[6] Zhao X.-Q., Dynamical systems in population biology, Springer-Verlag, N.Y., 2003, 276 pp. | MR | Zbl

[7] Smirnov A.I., “O nekotorykh oslableniyakh ponyatiya nerazlozhimosti”, Vestn. UIEUiP, 2016, no. 3, 26–30

[8] Lemmens B., Roelands M., “Unique geodesics for Thompson's metric”, Ann. Institut Fourier, 65:1 (2015), 315–348 | DOI | MR | Zbl

[9] Smirnov A.I., “Subodnorodnye otobrazheniya v teorii monotonnykh dinamicheskikh sistem”, Vestn. UIEUiP, 2016, no. 1, 68–80

[10] Opoitsev V.I., Ravnovesie i ustoichivost v modelyakh kollektivnogo povedeniya, Nauka, M., 1977, 245 pp. | MR

[11] Cobzas S., Rus M.-D., “Normal cones and Thompson metric”, Topics in Mathematical Analysis and Applications, Springer Optim. Appl., 94, eds. T.M. Rassias, L. Toth, 2014, 209–258 | DOI | MR | Zbl