Conditions for the irreducibility and primitivity of monotone subhomogeneous mappings
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 3, pp. 169-177
Voir la notice de l'article provenant de la source Math-Net.Ru
We present necessary and sufficient conditions for the local irreducibility of monotone subhomogeneous transformations of the cone $\mathbb{R}_+^q$. The main attention is paid to the notion of irreducibility of a mapping at zero, which is a weakening of the classical notion of irreducibility of a mapping. We analyze the properties of monotone first-degree positively homogeneous mappings irreducible at zero and of subhomogeneous mappings. Necessary and sufficient conditions are obtained for the primitivity of such mappings.
Keywords:
first-degree positively homogeneous mapping, subhomogeneous mapping, irreducible mapping, irreducible at zero mapping, primitive mapping.
@article{TIMM_2016_22_3_a16,
author = {V. D. Mazurov and A. I. Smirnov},
title = {Conditions for the irreducibility and primitivity of monotone subhomogeneous mappings},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {169--177},
publisher = {mathdoc},
volume = {22},
number = {3},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a16/}
}
TY - JOUR AU - V. D. Mazurov AU - A. I. Smirnov TI - Conditions for the irreducibility and primitivity of monotone subhomogeneous mappings JO - Trudy Instituta matematiki i mehaniki PY - 2016 SP - 169 EP - 177 VL - 22 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a16/ LA - ru ID - TIMM_2016_22_3_a16 ER -
%0 Journal Article %A V. D. Mazurov %A A. I. Smirnov %T Conditions for the irreducibility and primitivity of monotone subhomogeneous mappings %J Trudy Instituta matematiki i mehaniki %D 2016 %P 169-177 %V 22 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a16/ %G ru %F TIMM_2016_22_3_a16
V. D. Mazurov; A. I. Smirnov. Conditions for the irreducibility and primitivity of monotone subhomogeneous mappings. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 3, pp. 169-177. http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a16/