Some facts about the Ramsey model
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 3, pp. 160-168 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In modeling the dynamics of capital, the Ramsey equation coupled with the Cobb-Douglas production function is reduced to a linear differential equation by means of the Bernoulli substitution. This equation is used in the optimal growth problem with logarithmic preferences. The study deals with solving the corresponding infinite horizon optimal control problem. We consider a vector field of the Hamiltonian system in the Pontryagin maximum principle, taking into account control constraints. We prove the existence of two alternative steady states, depending on the constraints. This result enriches our understanding of the model analysis in the optimal control framework.
Keywords: mathematical modeling, optimal growth problem, Pontryagin maximum principle, steady states.
@article{TIMM_2016_22_3_a15,
     author = {A. A. Krasovskii and P. D. Lebedev and A. M. Tarasyev},
     title = {Some facts about the {Ramsey} model},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {160--168},
     year = {2016},
     volume = {22},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a15/}
}
TY  - JOUR
AU  - A. A. Krasovskii
AU  - P. D. Lebedev
AU  - A. M. Tarasyev
TI  - Some facts about the Ramsey model
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 160
EP  - 168
VL  - 22
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a15/
LA  - ru
ID  - TIMM_2016_22_3_a15
ER  - 
%0 Journal Article
%A A. A. Krasovskii
%A P. D. Lebedev
%A A. M. Tarasyev
%T Some facts about the Ramsey model
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 160-168
%V 22
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a15/
%G ru
%F TIMM_2016_22_3_a15
A. A. Krasovskii; P. D. Lebedev; A. M. Tarasyev. Some facts about the Ramsey model. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 3, pp. 160-168. http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a15/

[1] Ramsey F.P., “A mathematical theory of saving”, Econ. J., 38:152 (1928), 543–559 | DOI

[2] Acemoglu D., Introduction to modern economic growth, Princeton Univ. Press, Princeton, 2008, 1008 pp.

[3] L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, E.F. Mischenko, Matematicheskaya teoriya optimalnykh protsessov, 2-e izd., Nauka, M., 1969, 393 pp.

[4] Aseev S.M., Besov K.O., Kryazhimskii A.V., “Zadachi optimalnogo upravleniya na beskonechnom intervale vremeni v ekonomike”, Uspekhi mat. nauk, 67:2 (404) (2012), 3–64 | DOI | MR | Zbl

[5] Solow R.M., “Technical change and the aggregate production function”, Rev. Econ. Stat., 39:3 (1957), 312–320 | DOI | MR

[6] Smith W.T., “A closed form solution to the Ramsey model”, Contrib. Macroecon., 6:1 (2006), 1–27 | DOI

[7] Aseev S.M., Kryazhimskii A.V., “Printsip maksimuma Pontryagina i zadachi optimalnogo ekonomicheskogo rosta”, Tr. MIAN, 2007, no. 257, 3–271 | MR

[8] Krasovskii A.A., Tarasev A.M., “Svoistva gamiltonovykh sistem v printsipe maksimuma Pontryagina dlya zadach ekonomicheskogo rosta”, Tr. MIAN, 2008, no. 262, 127–145 | MR | Zbl

[9] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970, 720 pp. | MR