Computational complexity of the vertex cover problem in the class of planar triangulations
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 3, pp. 153-159
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We study the computational complexity of the vertex cover problem in the class of planar graphs (planar triangulations) admitting a planar representation whose faces are triangles. It is shown that the problem is strongly NP-hard in the class of 4-connected planar triangulations in which the degrees of all vertices are of order $O(\log n)$, where $n$ is the number of vertices, and in the class of planar 4-connected Delaunay triangulations based on the Minkowski triangular distance. A pair of vertices in such a triangulation is adjacent if and only if there is an equilateral triangle $\nabla(p,\lambda)$ with $p\in\mathbb{R}^2$ and $\lambda>0$ whose interior does not contain triangulation vertices and whose boundary contains this pair of vertices and only it, where $\nabla(p,\lambda)=p+\lambda\nabla=\{x\in\mathbb{R}^2\colon x=p+\lambda a,a\in\nabla\}$; here, $\nabla$ is the equilateral triangle with unit sides such that its barycenter is the origin and one of the vertices belongs to the negative $y$-axis.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
computational complexity
Mots-clés : Delaunay triangulation, Delaunay TD-triangulation.
                    
                  
                
                
                Mots-clés : Delaunay triangulation, Delaunay TD-triangulation.
@article{TIMM_2016_22_3_a14,
     author = {K. S. Kobylkin},
     title = {Computational complexity of the vertex cover problem in the class of planar triangulations},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {153--159},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a14/}
}
                      
                      
                    TY - JOUR AU - K. S. Kobylkin TI - Computational complexity of the vertex cover problem in the class of planar triangulations JO - Trudy Instituta matematiki i mehaniki PY - 2016 SP - 153 EP - 159 VL - 22 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a14/ LA - ru ID - TIMM_2016_22_3_a14 ER -
K. S. Kobylkin. Computational complexity of the vertex cover problem in the class of planar triangulations. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 3, pp. 153-159. http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a14/
