@article{TIMM_2016_22_3_a13,
author = {A. V. Kel'manov and L. V. Mikhailova and S. A. Khamidullin and V. I. Khandeev},
title = {An approximation algorithm for the problem of partitioning a sequence into clusters with constraints on their cardinalities},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {144--152},
year = {2016},
volume = {22},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a13/}
}
TY - JOUR AU - A. V. Kel'manov AU - L. V. Mikhailova AU - S. A. Khamidullin AU - V. I. Khandeev TI - An approximation algorithm for the problem of partitioning a sequence into clusters with constraints on their cardinalities JO - Trudy Instituta matematiki i mehaniki PY - 2016 SP - 144 EP - 152 VL - 22 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a13/ LA - ru ID - TIMM_2016_22_3_a13 ER -
%0 Journal Article %A A. V. Kel'manov %A L. V. Mikhailova %A S. A. Khamidullin %A V. I. Khandeev %T An approximation algorithm for the problem of partitioning a sequence into clusters with constraints on their cardinalities %J Trudy Instituta matematiki i mehaniki %D 2016 %P 144-152 %V 22 %N 3 %U http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a13/ %G ru %F TIMM_2016_22_3_a13
A. V. Kel'manov; L. V. Mikhailova; S. A. Khamidullin; V. I. Khandeev. An approximation algorithm for the problem of partitioning a sequence into clusters with constraints on their cardinalities. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 3, pp. 144-152. http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a13/
[1] Tak-chung Fu., “A review on time series data mining”, Engineering Applications of Artificial Intelligence, 24:1 (2011), 164–181 | DOI
[2] Remote sensing time series: Revealing Land Surface Dynamics, Remote Sensing and Digital Image Processing, 22, eds. C. Kuenzer, S. Dech, W. Wagner, Springer International Publishing, New York etc., 2015, 441 pp.
[3] T. Warren Liao, “Clustering of time series data - a survey”, Pattern Recognition, 38:11 (2005), 1857–1874 | DOI | Zbl
[4] Aggarwal C.C., Data mining: The textbook, Springer International Publishing, New York etc., 2015, 734 pp. | MR | Zbl
[5] Kelmanov A.V., Pyatkin A.V., “O slozhnosti nekotorykh zadach klasternogo analiza vektornykh posledovatelnostei”, Diskretnyi analiz i issledovanie operatsii, 20:2 (2013), 47–57 | MR | Zbl
[6] Kelmanov A.V., Khamidullin S.A., “Priblizhennyi algoritm dlya odnoi zadachi razbieniya posledovatelnosti”, Diskretnyi analiz i issledovanie operatsii, 21:1 (2014), 53–66 | MR | Zbl
[7] Kelmanov A.V., Mikhailova L.V., “Sovmestnoe obnaruzhenie v kvaziperiodicheskoi posledovatelnosti zadannogo chisla fragmentov iz etalonnogo nabora i ee razbienie na uchastki, vklyuchayuschie serii odinakovykh fragmentov”, Zhurn. vychisl. matematiki i mat. fiziki, 46:1 (2006), 172–189 | MR | Zbl
[8] Kelmanov A.V., Khamidullin S.A., Khandeev V.I., “Tochnyi psevdopolinomialnyi algoritm dlya odnoi zadachi biklasterizatsii posledovatelnosti”, XV Vseross. konf. “Matematicheskoe programmirovanie i prilozheniya”, tez. dokl., IMM UrO RAN, Ekaterinburg, 2015, 139
[9] Kelmanov A.V., Khamidullin S.A., Khandeev V.I., “Polnostyu polinomialnaya approksimatsionnaya skhema dlya odnoi zadachi dvukhklasternogo razbieniya posledovatelnosti”, Diskretnyi analiz i issledovanie operatsii, 23:2 (2016), 21–40 | MR | Zbl
[10] Kelmanov A.V., Romanchenko S.M., “FPTAS dlya odnoi zadachi poiska podmnozhestva vektorov”, Diskretnyi analiz i issledovanie operatsii, 21:3 (2014), 41–52 | MR | Zbl