Sharp estimates for coefficients of odd trigonometric polynomials under a one-sided constraint
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 3, pp. 130-136 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study the largest and the smallest values of coefficients of odd trigonometric polynomials bounded from above by the function $\varphi(x)=x$ on the interval $[0,2\pi]$. A similar problem for the first and second coefficients was studied by the author earlier.
Keywords: trigonometric polynomials, one-sided constraints.
@article{TIMM_2016_22_3_a11,
     author = {D. O. Zykov},
     title = {Sharp estimates for coefficients of odd trigonometric polynomials under a one-sided constraint},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {130--136},
     year = {2016},
     volume = {22},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a11/}
}
TY  - JOUR
AU  - D. O. Zykov
TI  - Sharp estimates for coefficients of odd trigonometric polynomials under a one-sided constraint
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 130
EP  - 136
VL  - 22
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a11/
LA  - ru
ID  - TIMM_2016_22_3_a11
ER  - 
%0 Journal Article
%A D. O. Zykov
%T Sharp estimates for coefficients of odd trigonometric polynomials under a one-sided constraint
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 130-136
%V 22
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a11/
%G ru
%F TIMM_2016_22_3_a11
D. O. Zykov. Sharp estimates for coefficients of odd trigonometric polynomials under a one-sided constraint. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 3, pp. 130-136. http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a11/

[1] Polia G., Sege G., Zadachi i teoremy iz analiza, I, Nauka, M., 1978, 392 pp.

[2] Milovanovic G.V., Mitrinovic D.S., Rassias Th.M., Topics in polynomials: Extremal problems, inequalities, zeros, World Scientific, Singapore, 1994, 821 pp. | MR | Zbl

[3] Fejer L., “Uber trigonometrische Polynome”, J. Angew. Math., 146 (1915), 53–82 | MR | Zbl

[4] Egervary E.V, Szasz 0., “Einige Extremalprobleme im Bereiche der trigonometrischen Polynome”, Mathematische Zeitschrift, 27 (1928), 641–652 | DOI | MR | Zbl

[5] Arestov V.V., Kondratev V.P., “Ob odnoi ekstremalnoi zadache dlya neotritsatelnykh trigonometricheskikh polinomov”, Mat. zametki, 47:1 (1990), 15–28 | MR

[6] Revesz Sz.Gy., “A Fejer type extremal problem”, Acta Math. Hungar, 57:3–4 (1991), 279–283 | MR | Zbl

[7] Revesz Sz., “On some extremal problems of Landau”, Serdica Math. J., 33:1 (2007), 125–162 | MR | Zbl

[8] Arestov V.V., Mendelev A.S., “Trigonometric polynomials that deviate the least from zero in measure and related problems”, J. Approx. Theory, 162:10 (2010), 1852–1878 | DOI | MR | Zbl

[9] Arestov V.V., Glazyrina P.Yu., “Sharp integral inequalities for fractional derivatives of trigonometric polynomials”, J. Approx. Theory, 164:11 (2012), 1501–1512 | DOI | MR | Zbl

[10] Zykov D.O., “Koeffitsienty trigonometricheskikh polinomov pri odnostoronnem ogranichenii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 21:4 (2015), 152–160 | MR

[11] Zykov D.O., “Issledovanie vtorogo koeffitsienta nechetnogo trigonometricheskogo polinoma pri odnostoronnem ogranichenii”, Materialy 47-i Mezhdunar. molodezh. shk.-konf. “Sovremennye problemy matematiki i ee prilozhenii”, IMM UrO RAN, Ekaterinburg, 2016, 179–185

[12] Arestov V.V., Glazyrina P.Yu., Vvedenie v teoriyu funktsii deistvitelnogo peremennogo: Mera i integral Lebega na pryamoi, ucheb. posobie, Izd-vo Ural. un-ta, Ekaterinburg, 2011, 166 pp.