Finite simple groups in which all maximal subgroups are $\pi$-closed. II
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 3, pp. 12-22
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We continue the study of pairs $(G,\pi)$, where $G$ is a finite simple nonabelian group and $\pi$ a set of primes, such that $G$ has only $\pi$-closed maximal subgroups but is not $\pi$-closed itself. Using the results of the first paper from the series, we give a list of such pairs $(G,\pi)$ in the case when $G$ is different from the groups $PSL_r(q)$ and $PSU_r(q)$ with prime odd $r$ and $E_8(q)$, where $q$ is a prime power.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
finite group, $\pi$-closed group, maximal subgroup.
Mots-clés : simple group
                    
                  
                
                
                Mots-clés : simple group
@article{TIMM_2016_22_3_a1,
     author = {V. A. Belonogov},
     title = {Finite simple groups in which all maximal subgroups are $\pi$-closed. {II}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {12--22},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a1/}
}
                      
                      
                    V. A. Belonogov. Finite simple groups in which all maximal subgroups are $\pi$-closed. II. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 3, pp. 12-22. http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a1/
