Finite groups with Hall Schmidt subgroups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 3, pp. 3-11 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We obtain a complete description for the structure of a finite group in which any Schmidt subgroup is a Hall subgroup.
Keywords: finite group, Schmidt group, Hall subgroup, hypercenter of a group.
Mots-clés : Frobenius group
@article{TIMM_2016_22_3_a0,
     author = {E. N. Bazhanova and V. A. Vedernikov},
     title = {Finite groups with {Hall} {Schmidt} subgroups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {3--11},
     year = {2016},
     volume = {22},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a0/}
}
TY  - JOUR
AU  - E. N. Bazhanova
AU  - V. A. Vedernikov
TI  - Finite groups with Hall Schmidt subgroups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 3
EP  - 11
VL  - 22
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a0/
LA  - ru
ID  - TIMM_2016_22_3_a0
ER  - 
%0 Journal Article
%A E. N. Bazhanova
%A V. A. Vedernikov
%T Finite groups with Hall Schmidt subgroups
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 3-11
%V 22
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a0/
%G ru
%F TIMM_2016_22_3_a0
E. N. Bazhanova; V. A. Vedernikov. Finite groups with Hall Schmidt subgroups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 3, pp. 3-11. http://geodesic.mathdoc.fr/item/TIMM_2016_22_3_a0/

[1] Shmidt O.Yu., “Gruppy, vse podgruppy kotorykh spetsialnye”, Mat. sb., 31 (1924), 366–372 | Zbl

[2] Chunikhin S.A., Podgruppy konechnykh grupp, Nauka i tekhnika, Mn., 1964, 158 pp. | MR

[3] Shemetkov L.A., “O.Yu. Shmidt i konechnye gruppy”, Ukr. mat. zhurn., 23:5 (1971), 585–590

[4] Mazurov V.D., Syskin S.A., “O konechnykh gruppakh so spetsialnymi silovskimi 2-podgruppami”, Mat. zametki, 14:2 (1973), 217–222 | MR

[5] Zhurtov A.Kh., Syskin S.A., “O gruppakh Shmidta”, Sib. mat. zhurn., 26:1 (1987), 74–78 | MR

[6] Monakhov V.S., “Podgruppy Shmidta, ikh suschestvovanie i nekotorye prilozheniya”, Tr. Ukr. mat. kongressa. Sek. 1., Kiev, 2001, 81–90

[7] Monakhov V.S., Knyagina V.N., “O konechnykh gruppakh s nekotorymi subnormalnymi podgruppami Shmidta”, Sib. mat. zhurn., 45:6 (2004), 1316–1322 | MR | Zbl

[8] Vedernikov V.A., “Konechnye gruppy s subnormalnymi podgruppami Shmidta”, Algebra i logika, 46:6 (2007), 669–687 | MR | Zbl

[9] Kniahina V.N., Monakhov V.S., “Finite groups with hall Schmidt subgroups”, Publ. Math. Debrecen, 81:3–4 (2012), 341–350 | DOI | MR | Zbl

[10] Iwasawa K., “Uber die Struktur der endlichen Gruppen, deren echte Untergruppen samtlich nilpotent sind”, Proc. Phys.-Math. Soc. III Ser. Japan, 23 (1941), 1–4 | MR

[11] Golfand Yu.A., “O gruppakh, vse podgruppy kotorykh spetsialnye”, Dokl. AN SSSR, 60:8 (1948), 1313–1315 | MR | Zbl

[12] Redei L., “Die endlichen einstufig nichtnilpotenten Gruppen”, Publ. Math. Debrecen, 1956, no. 4, 303–324 | MR | Zbl

[13] Shemetkov L.A., Formatsii konechnykh grupp, Nauka, M., 1978, 267 pp. | MR

[14] Huppert B., Endliche Gruppen I., Springer-Verlag, Berlin; Heidelberg; N. Y., 1967, 793 pp. | MR | Zbl

[15] Monakhov V.S., Vvedenie v teoriyu konechnykh grupp i ikh klassov, Vycsh. shk., Mn., 2006, 207 pp.

[16] Vedernikov V.A., Bazhanova E.N., “Konechnye gruppy s khollovymi podgruppami Shmidta”, Abelevy gruppy, materialy Mezhdunar. simpoziuma, posvyasch. 100-letiyu so dnya rozhdeniya L.Ya. Kulikova, Mosk. pedagog. gos. un-t, M., 2014, 21–22