Keywords: well test, Tikhonov regularization, method of quasisolutions, system of exponents, a priori constraints.
@article{TIMM_2016_22_2_a9,
author = {V. V. Vasin and G. G. Skorik},
title = {Solution of the deconvolution problem in the general statement},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {79--90},
year = {2016},
volume = {22},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a9/}
}
V. V. Vasin; G. G. Skorik. Solution of the deconvolution problem in the general statement. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 2, pp. 79-90. http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a9/
[1] Everdinger A.F. von, Hurst W., “The application of the Laplace transformation to flow problem in reservoir”, Trans. AIME, 186 (1949), 305–324
[2] Bourdet D., Ayoub J.A., Pirard Y.M., “Use of pressure derivative in well-test interpretation”, SPE Formation Evaluation, 1989, 12777, 293–302 | DOI
[3] Pimonov E.A., Onur M., Kuchuk F.J., “A new robust algorithm for solution of pressure/rate deconvolution problem”, J. Inv. Ill-Posed Problems, 17:6 (2009), 611–627 | DOI | MR | Zbl
[4] K.H. Coats, L.A. Rapport, J.R. McCord, W.P. Drews, “Determination of aquifer influence functions from field data”, Trans. AIME, 231 (1964), 1417–1424
[5] Kuchuk F.J., Onur M., Hollander F., Pressure transient formation and well testing: Convolution, deconvolution and nonlinear estimation, Elsevier, Amsterdam, 2010, 387 pp.
[6] V. Vasin, G. Skorik, E. Pimonov, F. Kuchuk, “New regular algorithms for solution of the convolution problem in well test interpretation”, Appl. Math., 1:5 (2010), 387–399 | DOI
[7] Schroeter T. von, Hollander F., Gringarten A., “Deconvolution of well-test data analysis as a nonlinear total least squares problem”, SPE J., 9:4 (2004), 375–390 | DOI
[8] Vasin V.V., Skorik G.G., “Pressure/rate deconvolution problem and reconstruction of solution satisfying to all a priori constraints”, Proc. 8$^{th}$ Intern. Conf. on Inverse Problems in Engineering, eds. I. Szczygiel, A.J. Novak, M. Rojchyk, Inst. Thermal Technology Silesian University of Technology, Gliwice; Krakow, 2014, 343–352
[9] Muntz H., “Uber den Approximationssatz von Weierstrass”, H. A. Schwarz's Festschrift, Berlin, 1914, 303–312 | Zbl
[10] Ivanov V.K., “O nekorrektno postavlennykh zadachakh”, Mat. sb., 61:2 (1963), 211–223 | MR | Zbl
[11] Ivanov V.K., Vasin V.V., Tanana V.P., Theory of linear Ill-posed problems and its applications, USP, Utrecht; Boston; Koln; Tokyo, 2002, 281 pp. | MR
[12] Tikhonov A.N., “O reshenii nekorrektno postavlennykh zadachakh i metode regulyarizatsii”, Dokl. AN SSSR, 151:3 (1963), 501–504 | MR | Zbl
[13] Tikhonov A.N., Arsenin V.Ya., Metody resheniya nekorrektnykh zadach, 2-e izd., Nauka, M., 1979, 285 pp. | MR
[14] Vasilev F.P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1980, 520 pp. | MR
[15] Tikhonov A.N., Leonov A.S., Yagola A.G., Nelineinye nekorrektnye zadachi, Nauka; Fizmatlit, M., 1995, 307 pp. | MR
[16] Nocedal J. and Wright S.J., Numerical optimization, 2nd ed., Springer-Verlag, Berlin; New York, 2006, 664 pp. | MR | Zbl