Solution of the deconvolution problem in the general statement
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 2, pp. 79-90 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The deconvolution problem, which arises in the description of well testing processes, is formulated in the form of a Volterra equation of the first kind with discontinuous input data (the kernel is the flow rate and the right-hand side is the pressure change) characterized by large measurement errors. In addition, the solution of this equation has multiscale behavior in its domain. In this situation, the traditional solution algorithms for Volterra equations, as a rule, do not provide satisfactory results. To solve the problem, we use the variational regularization methods and construct a function basis (a system of exponents), which allow us to take into account in the algorithms all a priori constraints known for the desired solution. As a result, we form a family of approximate solutions that satisfies the conditions of smoothness end exactness required for the interpretation of well tests. For the constructed regularizing algorithms, we formulate convergence theorems and describe the details of numerical implementation.
Mots-clés : deconvolution problem
Keywords: well test, Tikhonov regularization, method of quasisolutions, system of exponents, a priori constraints.
@article{TIMM_2016_22_2_a9,
     author = {V. V. Vasin and G. G. Skorik},
     title = {Solution of the deconvolution problem in the general statement},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {79--90},
     year = {2016},
     volume = {22},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a9/}
}
TY  - JOUR
AU  - V. V. Vasin
AU  - G. G. Skorik
TI  - Solution of the deconvolution problem in the general statement
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 79
EP  - 90
VL  - 22
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a9/
LA  - ru
ID  - TIMM_2016_22_2_a9
ER  - 
%0 Journal Article
%A V. V. Vasin
%A G. G. Skorik
%T Solution of the deconvolution problem in the general statement
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 79-90
%V 22
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a9/
%G ru
%F TIMM_2016_22_2_a9
V. V. Vasin; G. G. Skorik. Solution of the deconvolution problem in the general statement. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 2, pp. 79-90. http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a9/

[1] Everdinger A.F. von, Hurst W., “The application of the Laplace transformation to flow problem in reservoir”, Trans. AIME, 186 (1949), 305–324

[2] Bourdet D., Ayoub J.A., Pirard Y.M., “Use of pressure derivative in well-test interpretation”, SPE Formation Evaluation, 1989, 12777, 293–302 | DOI

[3] Pimonov E.A., Onur M., Kuchuk F.J., “A new robust algorithm for solution of pressure/rate deconvolution problem”, J. Inv. Ill-Posed Problems, 17:6 (2009), 611–627 | DOI | MR | Zbl

[4] K.H. Coats, L.A. Rapport, J.R. McCord, W.P. Drews, “Determination of aquifer influence functions from field data”, Trans. AIME, 231 (1964), 1417–1424

[5] Kuchuk F.J., Onur M., Hollander F., Pressure transient formation and well testing: Convolution, deconvolution and nonlinear estimation, Elsevier, Amsterdam, 2010, 387 pp.

[6] V. Vasin, G. Skorik, E. Pimonov, F. Kuchuk, “New regular algorithms for solution of the convolution problem in well test interpretation”, Appl. Math., 1:5 (2010), 387–399 | DOI

[7] Schroeter T. von, Hollander F., Gringarten A., “Deconvolution of well-test data analysis as a nonlinear total least squares problem”, SPE J., 9:4 (2004), 375–390 | DOI

[8] Vasin V.V., Skorik G.G., “Pressure/rate deconvolution problem and reconstruction of solution satisfying to all a priori constraints”, Proc. 8$^{th}$ Intern. Conf. on Inverse Problems in Engineering, eds. I. Szczygiel, A.J. Novak, M. Rojchyk, Inst. Thermal Technology Silesian University of Technology, Gliwice; Krakow, 2014, 343–352

[9] Muntz H., “Uber den Approximationssatz von Weierstrass”, H. A. Schwarz's Festschrift, Berlin, 1914, 303–312 | Zbl

[10] Ivanov V.K., “O nekorrektno postavlennykh zadachakh”, Mat. sb., 61:2 (1963), 211–223 | MR | Zbl

[11] Ivanov V.K., Vasin V.V., Tanana V.P., Theory of linear Ill-posed problems and its applications, USP, Utrecht; Boston; Koln; Tokyo, 2002, 281 pp. | MR

[12] Tikhonov A.N., “O reshenii nekorrektno postavlennykh zadachakh i metode regulyarizatsii”, Dokl. AN SSSR, 151:3 (1963), 501–504 | MR | Zbl

[13] Tikhonov A.N., Arsenin V.Ya., Metody resheniya nekorrektnykh zadach, 2-e izd., Nauka, M., 1979, 285 pp. | MR

[14] Vasilev F.P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1980, 520 pp. | MR

[15] Tikhonov A.N., Leonov A.S., Yagola A.G., Nelineinye nekorrektnye zadachi, Nauka; Fizmatlit, M., 1995, 307 pp. | MR

[16] Nocedal J. and Wright S.J., Numerical optimization, 2nd ed., Springer-Verlag, Berlin; New York, 2006, 664 pp. | MR | Zbl