On the stable tracking problem for a solution of a differential equation in a Hilbert space
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 2, pp. 63-70 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the problem of tracking a solution of a reference parabolic equation by a solution of another equation. A stable algorithm based on the extremal shift method is proposed for this problem. The algorithm is designed to work on a sufficiently large time interval where both equations operate.
Mots-clés : parabolic equation
Keywords: tracking problem.
@article{TIMM_2016_22_2_a7,
     author = {M. S. Blizorukova and V. I. Maksimov},
     title = {On the stable tracking problem for a solution of a differential equation in a {Hilbert} space},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {63--70},
     year = {2016},
     volume = {22},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a7/}
}
TY  - JOUR
AU  - M. S. Blizorukova
AU  - V. I. Maksimov
TI  - On the stable tracking problem for a solution of a differential equation in a Hilbert space
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 63
EP  - 70
VL  - 22
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a7/
LA  - ru
ID  - TIMM_2016_22_2_a7
ER  - 
%0 Journal Article
%A M. S. Blizorukova
%A V. I. Maksimov
%T On the stable tracking problem for a solution of a differential equation in a Hilbert space
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 63-70
%V 22
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a7/
%G ru
%F TIMM_2016_22_2_a7
M. S. Blizorukova; V. I. Maksimov. On the stable tracking problem for a solution of a differential equation in a Hilbert space. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 2, pp. 63-70. http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a7/

[1] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, M., 1974, 456 pp. | MR

[2] Osipov Yu.S., Izbrannye trudy, Izd-vo Mosk. un-ta, M., 2009, 654 pp.

[3] Maksimov V.I., Zadachi dinamicheskogo vosstanovleniya vkhodov beskonechnomernykh sistem, Ekaterinburg, 2000, 305 pp.

[4] Osipov Yu.S., Kryazhimskii A.V., Maksimov V.I., Metody dinamicheskogo vosstanovleniya vkhodov upravlyaemykh sistem, Ekaterinburg, 2011, 291 pp.

[5] Maksimov V.I., “Ob otslezhivanii resheniya parabolicheskogo uravneniya”, Iz. vuzov. Matematika, 2012, no. 1, 40–48 | MR | Zbl

[6] Maksimov V.I., “Regularized extremal shift in problems of stable control”, System Modeling and Optimization, IFIP Advances in Information and Communication Technology, 391, Springer, Berlin, 2013, 112–121 | DOI | MR | Zbl

[7] Maksimov V.I., “Ob otslezhivanii traektorii dinamicheskoi sistemy”, Prikl. matematika i mekhanika, 75:6 (2011), 951–960 | MR | Zbl

[8] Kryazhimskii A.V., Maksimov V.I., “Zadacha resursosberegayuschego slezheniya na beskonechnom promezhutke vremeni”, Differents. uravneniya, 47:7 (2011), 993–1002 | MR

[9] Maksimov V.I., “Ob odnom algoritme otslezhivaniya resheniya parabolicheskogo uravneniya na beskonechnom promezhutke vremeni”, Differents. uravneniya, 50:3 (2014), 366–375 | DOI | MR | Zbl

[10] Banks H.T., Kappel F., “Spline approximation for functional-differential equations”, J. Differ. Equat., 34:3 (1979), 406–522 | DOI | MR

[11] Bernier C., Manitius A., “On semigroups in $R^n\times L^p$ corresponding to differential equations with delays”, Canad. J. Math., 14:5 (1978), 897–914 | DOI | MR