A trajectory in $\mathbb {R}^3$ concealed from observers
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 2, pp. 47-54
Cet article a éte moissonné depuis la source Math-Net.Ru
In the problem of tracking by observers of an object moving in $\mathbb {R}^3$, the most concealed trajectory is characterized under the condition that the object is at any time visible to at most two observers.
Mots-clés :
navigation, observer.
Keywords: tracking problem, moving object
Keywords: tracking problem, moving object
@article{TIMM_2016_22_2_a5,
author = {V. I. Berdyshev},
title = {A trajectory in $\mathbb {R}^3$ concealed from observers},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {47--54},
year = {2016},
volume = {22},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a5/}
}
V. I. Berdyshev. A trajectory in $\mathbb {R}^3$ concealed from observers. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 2, pp. 47-54. http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a5/
[1] Berdyshev V.I., “Kharakteristiki skrytosti dvizhuschegosya ob'ekta”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18:4 (2012), 110–119 | MR
[2] Berdyshev V.I., “K zadache soprovozhdeniya dvizhuschegosya ob'ekta nablyudatelyami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 21:1 (2015), 46–55 | MR | Zbl
[3] Berdyshev V.I., “Dvizhuschiisya ob'ekt i nablyudateli v $\mathbb {R}^2$ s kusochno-gladkim zatenyayuschim mnozhestvom”, Tr. In-ta matematiki i mekhaniki UrO RAN, 21:4 (2015), 95–101 | MR
[4] Berdyshev V.I., “Dvizhuschiisya ob'ekt i nablyudatel”, Dokl. AN, 464:4 (2015), 411–413 | DOI | MR | Zbl