A trajectory in $\mathbb {R}^3$ concealed from observers
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 2, pp. 47-54

Voir la notice de l'article provenant de la source Math-Net.Ru

In the problem of tracking by observers of an object moving in $\mathbb {R}^3$, the most concealed trajectory is characterized under the condition that the object is at any time visible to at most two observers.
Mots-clés : navigation, observer.
Keywords: tracking problem, moving object
@article{TIMM_2016_22_2_a5,
     author = {V. I. Berdyshev},
     title = {A trajectory in $\mathbb {R}^3$ concealed from observers},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {47--54},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a5/}
}
TY  - JOUR
AU  - V. I. Berdyshev
TI  - A trajectory in $\mathbb {R}^3$ concealed from observers
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 47
EP  - 54
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a5/
LA  - ru
ID  - TIMM_2016_22_2_a5
ER  - 
%0 Journal Article
%A V. I. Berdyshev
%T A trajectory in $\mathbb {R}^3$ concealed from observers
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 47-54
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a5/
%G ru
%F TIMM_2016_22_2_a5
V. I. Berdyshev. A trajectory in $\mathbb {R}^3$ concealed from observers. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 2, pp. 47-54. http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a5/