A trajectory in $\mathbb {R}^3$ concealed from observers
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 2, pp. 47-54 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the problem of tracking by observers of an object moving in $\mathbb {R}^3$, the most concealed trajectory is characterized under the condition that the object is at any time visible to at most two observers.
Mots-clés : navigation, observer.
Keywords: tracking problem, moving object
@article{TIMM_2016_22_2_a5,
     author = {V. I. Berdyshev},
     title = {A trajectory in $\mathbb {R}^3$ concealed from observers},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {47--54},
     year = {2016},
     volume = {22},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a5/}
}
TY  - JOUR
AU  - V. I. Berdyshev
TI  - A trajectory in $\mathbb {R}^3$ concealed from observers
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 47
EP  - 54
VL  - 22
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a5/
LA  - ru
ID  - TIMM_2016_22_2_a5
ER  - 
%0 Journal Article
%A V. I. Berdyshev
%T A trajectory in $\mathbb {R}^3$ concealed from observers
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 47-54
%V 22
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a5/
%G ru
%F TIMM_2016_22_2_a5
V. I. Berdyshev. A trajectory in $\mathbb {R}^3$ concealed from observers. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 2, pp. 47-54. http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a5/

[1] Berdyshev V.I., “Kharakteristiki skrytosti dvizhuschegosya ob'ekta”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18:4 (2012), 110–119 | MR

[2] Berdyshev V.I., “K zadache soprovozhdeniya dvizhuschegosya ob'ekta nablyudatelyami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 21:1 (2015), 46–55 | MR | Zbl

[3] Berdyshev V.I., “Dvizhuschiisya ob'ekt i nablyudateli v $\mathbb {R}^2$ s kusochno-gladkim zatenyayuschim mnozhestvom”, Tr. In-ta matematiki i mekhaniki UrO RAN, 21:4 (2015), 95–101 | MR

[4] Berdyshev V.I., “Dvizhuschiisya ob'ekt i nablyudatel”, Dokl. AN, 464:4 (2015), 411–413 | DOI | MR | Zbl