The program iteration method in a game problem of guidance
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 2, pp. 304-321 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A variant of the program iteration method for solving a game problem of guidance to a target set under state constraints is considered. We study a procedure for the construction of a positional absorption set corresponding to N.N. Krasovskii and A.I. Subbotin's theorem of alternatives, which underlies the modern theory of differential games. Important results on the alternative solvability of differential games for systems with distributed parameters and aftereffect belong to Yu.S. Osipov. These results are an essential complement to the ideas related to the alternative for dynamic problems of infinite-dimensional nature. The solution method from the present paper is intended for the “finite-dimensional” case of a differential game of approach-evasion.
Keywords: differential game, generalized program control, iteration method.
@article{TIMM_2016_22_2_a31,
     author = {A. G. Chentsov},
     title = {The program iteration method in a game problem of guidance},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {304--321},
     year = {2016},
     volume = {22},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a31/}
}
TY  - JOUR
AU  - A. G. Chentsov
TI  - The program iteration method in a game problem of guidance
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 304
EP  - 321
VL  - 22
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a31/
LA  - ru
ID  - TIMM_2016_22_2_a31
ER  - 
%0 Journal Article
%A A. G. Chentsov
%T The program iteration method in a game problem of guidance
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 304-321
%V 22
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a31/
%G ru
%F TIMM_2016_22_2_a31
A. G. Chentsov. The program iteration method in a game problem of guidance. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 2, pp. 304-321. http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a31/

[1] Aizeks R., Differentsialnye igry, Mir, M., 1967, 480 pp. | MR

[2] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR

[3] Krasovskii N.N., Subbotin A.I., “Alternativa dlya igrovoi zadachi sblizheniya”, Prikl. matematika i mekhanika, 34:6 (1970), 1005–1022 | MR

[4] Krasovskii N.N., “Differentsialnaya igra sblizheniya-ukloneniya,I”, Izv. AN SSSR. Tekhn. kibernetika, 1973, no. 2, 3–18 | MR

[5] Krasovskii N.N., “Differentsialnaya igra sblizheniya-ukloneniya,II”, Izv. AN SSSR. Tekhn. kibernetika, 1973, no. 3, 22–42 | MR

[6] Kryazhimskii A.V., “K teorii pozitsionnykh differentsialnykh igr sblizheniya-ukloneniya”, Dokl. AN SSSR, 239:4 (1978), 779–782 | MR

[7] Krasovskii N.N., Igrovye zadachi o vstreche dvizhenii, Nauka, M., 1970, 420 pp. | MR

[8] Chentsov A.G., “O strukture odnoi igrovoi zadachi sblizheniya”, Dokl. AN SSSR, 224:6 (1975), 1272–1275 | MR | Zbl

[9] Chentsov A.G., “K igrovoi zadache navedeniya”, Dokl. AN SSSR, 226:1 (1976), 73–76 | MR | Zbl

[10] Chentsov A.G., “Ob igrovoi zadache sblizheniya v zadannyi moment vremeni”, Mat. sb., 99:3 (1976), 394–420 | MR | Zbl

[11] Chistyakov S.V., “K resheniyu igrovykh zadach presledovaniya”, Prikl. matematika i mekhanika, 41:5 (1977), 825–832 | MR

[12] Ukhobotov V.I., “Postroenie stabilnogo mosta dlya odnogo klassa lineinykh igr”, Prikl. matematika i mekhanika, 41:2 (1977), 358–364 | MR

[13] Nardzewski C.R., “A theory of pursuit and evasion”, Adv. in game theory, Ann. Math. Studies, 1964, 113–127 | MR

[14] Roxin E., “Axiomatic approach in differential games”, J. Optim. Theory Appl., 3:3 (1969), 153–163 | DOI | MR | Zbl

[15] Subbotin A.I., Chentsov A.G., Optimizatsiya garantii v zadachakh upravleniya, Nauka, M., 1981, 288 pp. | MR

[16] Kuratovskii K., Mostovskii A., Teoriya mnozhestv, Mir, M., 1970, 416 pp. | MR

[17] Engelking R., Obschaya topologiya, Mir, M., 1986, 751 pp. | MR

[18] Chentsov A.G., Morina S.I., Extensions and relaxations, Kluwer Acad. Publ., Dordrecht; Boston; London, 2002, 408 pp. | MR | Zbl

[19] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977, 624 pp. | MR

[20] Chentsov A.G., Metod programmnykh iteratsii dlya differentsialnoi igry sblizheniya-ukloneniya, Dep. v VINITI 04.06.79,79, No1933-79, In-t matematiki i mekhaniki UNTs AN SSSR, 103 pp.

[21] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977, 351 pp. | MR

[22] Danford N., Shvarts Dzh.T., Lineinye operatory. Obschaya teoriya, IL, M., 1962, 895 pp.

[23] Chentsov A.G., Elementy konechno-additivnoi teorii mery,I, Izd-vo UGTU-UPI, Ekaterinburg, 2008, 389 pp.

[24] Kryazhimskii A.V., Chentsov A.G., O strukture igrovogo upravleniya v zadachakh sblizheniya i ukloneniya, Dep. v VINITI,No1729-80, In-t matematiki i mekhaniki UNTs AN SSSR, 1979, 72 pp.