The program iteration method in a game problem of guidance
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 2, pp. 304-321

Voir la notice de l'article provenant de la source Math-Net.Ru

A variant of the program iteration method for solving a game problem of guidance to a target set under state constraints is considered. We study a procedure for the construction of a positional absorption set corresponding to N.N. Krasovskii and A.I. Subbotin's theorem of alternatives, which underlies the modern theory of differential games. Important results on the alternative solvability of differential games for systems with distributed parameters and aftereffect belong to Yu.S. Osipov. These results are an essential complement to the ideas related to the alternative for dynamic problems of infinite-dimensional nature. The solution method from the present paper is intended for the “finite-dimensional” case of a differential game of approach-evasion.
Keywords: differential game, generalized program control, iteration method.
@article{TIMM_2016_22_2_a31,
     author = {A. G. Chentsov},
     title = {The program iteration method in a game problem of guidance},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {304--321},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a31/}
}
TY  - JOUR
AU  - A. G. Chentsov
TI  - The program iteration method in a game problem of guidance
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 304
EP  - 321
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a31/
LA  - ru
ID  - TIMM_2016_22_2_a31
ER  - 
%0 Journal Article
%A A. G. Chentsov
%T The program iteration method in a game problem of guidance
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 304-321
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a31/
%G ru
%F TIMM_2016_22_2_a31
A. G. Chentsov. The program iteration method in a game problem of guidance. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 2, pp. 304-321. http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a31/