Approximability of the optimal routing problem in finite-dimensional Euclidean spaces
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 2, pp. 292-303
Voir la notice de l'article provenant de la source Math-Net.Ru
The capacitated vehicle routing problem (CVRP) is a classical combinatorial optimization problem with a wide range of applications in operations research. Since the CVRP is NP-hard even in a finite-dimensional Euclidean space, special attention is traditionally paid to the issues of its approximability. A major part of the known results concerning approximation algorithms and polynomial-time approximation schemes (PTAS) for this problem are obtained for its particular instance on the Euclidean plane. In the present paper we show that the approach to the development of a PTAS in the planar problem with a single depot proposed by Haimovich and Rinnooy Kan in 1985 can be effectively applied in a more general case, for example, in spaces of arbitrary fixed dimension and for an arbitrary number of depots.
Keywords:
optimal routing, approximability, EPTAS.
Mots-clés : CVRP
Mots-clés : CVRP
@article{TIMM_2016_22_2_a30,
author = {M. Yu. Khachai and R. D. Dubinin},
title = {Approximability of the optimal routing problem in finite-dimensional {Euclidean} spaces},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {292--303},
publisher = {mathdoc},
volume = {22},
number = {2},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a30/}
}
TY - JOUR AU - M. Yu. Khachai AU - R. D. Dubinin TI - Approximability of the optimal routing problem in finite-dimensional Euclidean spaces JO - Trudy Instituta matematiki i mehaniki PY - 2016 SP - 292 EP - 303 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a30/ LA - ru ID - TIMM_2016_22_2_a30 ER -
%0 Journal Article %A M. Yu. Khachai %A R. D. Dubinin %T Approximability of the optimal routing problem in finite-dimensional Euclidean spaces %J Trudy Instituta matematiki i mehaniki %D 2016 %P 292-303 %V 22 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a30/ %G ru %F TIMM_2016_22_2_a30
M. Yu. Khachai; R. D. Dubinin. Approximability of the optimal routing problem in finite-dimensional Euclidean spaces. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 2, pp. 292-303. http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a30/