On automorphisms of distance-regular graphs with intersection arrays $\{2r+1,2r-2,1;1,2,2r+1\}$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 2, pp. 28-37 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $\Gamma$ be an antipodal graph with intersection array $\{2r+1,2r-2,1;1,2,2r+1\}$, where $2r(r+1)\le 4096$. If $2r+1$ is a prime power, then Mathon's scheme provides the existence of an edge-symmetric graph with this intersection array. Note that $2r+1$ is not a prime power only for $r\in \{7,17,19,22,25,27,31,32,37,38,42,43\}$. We study automorphisms of hypothetical distance-regular graphs with the specified values of $r$. The cases $r\in \{7,17,19\}$ were considered earlier. We prove that, if $\Gamma$ is a vertex-symmetric graph with intersection array $\{2r+1,2r-2,1;1,2,2r+1\}$, $2r+1$ is not a prime power, and $r\le 43$, then $r=25,27,31$.
Keywords: distance-regular graph
Mots-clés : graph automorphism.
@article{TIMM_2016_22_2_a3,
     author = {I. N. Belousov and A. A. Makhnev},
     title = {On automorphisms of distance-regular graphs with intersection arrays $\{2r+1,2r-2,1;1,2,2r+1\}$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {28--37},
     year = {2016},
     volume = {22},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a3/}
}
TY  - JOUR
AU  - I. N. Belousov
AU  - A. A. Makhnev
TI  - On automorphisms of distance-regular graphs with intersection arrays $\{2r+1,2r-2,1;1,2,2r+1\}$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 28
EP  - 37
VL  - 22
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a3/
LA  - ru
ID  - TIMM_2016_22_2_a3
ER  - 
%0 Journal Article
%A I. N. Belousov
%A A. A. Makhnev
%T On automorphisms of distance-regular graphs with intersection arrays $\{2r+1,2r-2,1;1,2,2r+1\}$
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 28-37
%V 22
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a3/
%G ru
%F TIMM_2016_22_2_a3
I. N. Belousov; A. A. Makhnev. On automorphisms of distance-regular graphs with intersection arrays $\{2r+1,2r-2,1;1,2,2r+1\}$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 2, pp. 28-37. http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a3/

[1] Makhnev A.A., Nirova M.S., “On distance-regular graphs with $\lambda=2$”, J. Sib. Fed. Univ. Math. Phys., 7:2 (2014), 204–210

[2] Brouwer A.E., Cohen A.M., Neumaier A., Distance-regular graphs, Springer-Verlag, Berlin, 1989, 495 pp. | MR | Zbl

[3] Belousov I.N., Makhnev A.A., “Gruppy avtomorfizmov antipodalnykh distantsionno regulyarnykh grafov s chislom vershin, ne bolshim 1000”, Mezhdunar. konf. “Maltsevskie chteniya”, tez. dokl., Novosibirsk, 2015, 87

[4] Makhnev A.A., Paduchikh D.V., “O gruppe avtomorfizmakh distantsionno regulyarnogo grafa s massivom peresechenii $\{24,21,3;1,3,18\}$”, Algebra i logika, 51:4 (2013), 476–495 | MR

[5] Cameron P., Permutation Groups, Cambridge Univ. Press, London, 1999, 220 pp. | MR | Zbl

[6] Gavrilyuk A.L., Makhnev A.A., “Ob avtomorfizmakh distantsionno regulyarnogo grafa s massivom peresechenii $\{56,45,1;1,9,56\}$”, Dokl. RAN, 432:5 (2010), 512–515

[7] Zavarnitsine A.V., “Finite simple groups with narrow prime spectrum”, Sibirean Electr. Math. Reports, 6 (2009), 1–12 | MR | Zbl

[8] C. Jansen et. al., An atlas of Brauer characters, Clarendon Press, Oxford, 1995, 327 pp. | MR | Zbl