Theorems on the separability of $\alpha$-sets in Euclidean space
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 2, pp. 277-291
Voir la notice de l'article provenant de la source Math-Net.Ru
We study $\alpha$-sets in Euclidean space $\mathbb{R}^n$. The notion of $\alpha$-set is introduced as a generalization of a convex closed set in $\mathbb{R}^n$. This notion appeared in the study of reachable sets and integral funnels of nonlinear control systems in Euclidean spaces. Reachable sets of nonlinear dynamic systems are usually nonconvex, and the degree of their nonconvexity is different in different systems. This circumstance prompted the introduction of a classification of sets in $\mathbb{R}^n$ according to the degree of their nonconvexity. Such a classification stems from control theory and is presented here as the notion of $\alpha$-set in $\mathbb{R}^n$.
Mots-clés :
$\alpha$-set, Bouligand cone
Keywords: convex set in $\mathbb{R}^n$, convex hull in $\mathbb{R}^n$, $\alpha$-hyperplane, $\alpha$-separability, normal cone.
Keywords: convex set in $\mathbb{R}^n$, convex hull in $\mathbb{R}^n$, $\alpha$-hyperplane, $\alpha$-separability, normal cone.
@article{TIMM_2016_22_2_a29,
author = {V. N. Ushakov and A. A. Uspenskii},
title = {Theorems on the separability of $\alpha$-sets in {Euclidean} space},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {277--291},
publisher = {mathdoc},
volume = {22},
number = {2},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a29/}
}
TY - JOUR AU - V. N. Ushakov AU - A. A. Uspenskii TI - Theorems on the separability of $\alpha$-sets in Euclidean space JO - Trudy Instituta matematiki i mehaniki PY - 2016 SP - 277 EP - 291 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a29/ LA - ru ID - TIMM_2016_22_2_a29 ER -
V. N. Ushakov; A. A. Uspenskii. Theorems on the separability of $\alpha$-sets in Euclidean space. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 2, pp. 277-291. http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a29/