Theorems on the separability of $\alpha$-sets in Euclidean space
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 2, pp. 277-291 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study $\alpha$-sets in Euclidean space $\mathbb{R}^n$. The notion of $\alpha$-set is introduced as a generalization of a convex closed set in $\mathbb{R}^n$. This notion appeared in the study of reachable sets and integral funnels of nonlinear control systems in Euclidean spaces. Reachable sets of nonlinear dynamic systems are usually nonconvex, and the degree of their nonconvexity is different in different systems. This circumstance prompted the introduction of a classification of sets in $\mathbb{R}^n$ according to the degree of their nonconvexity. Such a classification stems from control theory and is presented here as the notion of $\alpha$-set in $\mathbb{R}^n$.
Mots-clés : $\alpha$-set, Bouligand cone
Keywords: convex set in $\mathbb{R}^n$, convex hull in $\mathbb{R}^n$, $\alpha$-hyperplane, $\alpha$-separability, normal cone.
@article{TIMM_2016_22_2_a29,
     author = {V. N. Ushakov and A. A. Uspenskii},
     title = {Theorems on the separability of $\alpha$-sets in {Euclidean} space},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {277--291},
     year = {2016},
     volume = {22},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a29/}
}
TY  - JOUR
AU  - V. N. Ushakov
AU  - A. A. Uspenskii
TI  - Theorems on the separability of $\alpha$-sets in Euclidean space
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 277
EP  - 291
VL  - 22
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a29/
LA  - ru
ID  - TIMM_2016_22_2_a29
ER  - 
%0 Journal Article
%A V. N. Ushakov
%A A. A. Uspenskii
%T Theorems on the separability of $\alpha$-sets in Euclidean space
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 277-291
%V 22
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a29/
%G ru
%F TIMM_2016_22_2_a29
V. N. Ushakov; A. A. Uspenskii. Theorems on the separability of $\alpha$-sets in Euclidean space. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 2, pp. 277-291. http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a29/

[1] Ushakov V.N., Uspenskii A.A., Fomin A.N., $\alpha$-mnozhestva i ikh svoistva, Dep. v VINITI 02.04.2004,No543-V2004, In-t matematiki i mekhaniki UrO RAN, Ekaterinburg, 2004, 62 pp.

[2] Pshenichnyi B.N., Vypuklyi analiz i ekstremalnye zadachi, Nauka, M., 1980, 320 pp. | MR

[3] Polovinkin E.S., Balashov M.B., Elementy vypuklogo i silno vypuklogo analiza, Fizmatlit, M., 2007, 360 pp.

[4] Ushakov V.N., Uspenskii A.A., Lebedev P.D., “Postroenie minimaksnogo resheniya uravneniya tipa eikonala”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14:2 (2008), 182–191 | MR | Zbl

[5] Ushakov V.N., Uspenskii A.A., Tokmantsev T.B., “Stabilnye mosty v differentsialnykh igrakh na konechnom promezhutke vremeni”, Tr. In-ta matematiki i mekhaniki UrO RAN, 10:2 (2004), 155–177 | MR | Zbl

[6] Uspenskii A.A., Lebedev P.D., “Postroenie funktsii optimalnogo rezultata v zadache bystrodeistviya na osnove mnozhestva simmetrii”, Avtomatika i telemekhanika, 2009, no. 7, 50–57 | MR | Zbl

[7] Uspenskii A.A., Lebedev P.D., “Geometriya i asimptotika volnovykh frontov”, Izv. vuzov, 2008, no. 3, 27–37 | MR | Zbl

[8] Uspenskii A.A., Lebedev P.D., “O mnozhestve predelnykh znachenii lokalnykh diffeomorfizmov pri evolyutsii volnovykh frontov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16:1 (2010), 171–186 | MR

[9] Motzkin T., “Sur quelques proprieties caracteristiques des ensembes convexes”, Rend. Accad. Naz. Linsei. Red. VI, 21 (1935), 562–567

[10] Bouligand G., “Sur les surfaces depourvues de points hyperlimites”, Ann. Soc. Polon. Math., 9 (1930), 32–41

[11] Demyanov V.F., Rubinov A.M., Osnovy negladkogo analiza i kvazidiffepentsialnoe ischislenie, Nauka, M., 1990, 431 pp. | MR

[12] Makarov B.M., Podkorytov A.N., Lektsii po veschestvennomu analizu, Izd-vo: BKhV-Peterburg, 2011, 688 pp.