The problem of closed-loop guidance by a given time for a linear control system with delay
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 2, pp. 267-276

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of guaranteed closed-loop guidance by a given time under incomplete information on the initial state is studied for a dynamical control system with delay by means of the method of open-loop control packages. A solvability criterion is proved for this problem in the case of a finite set of admissible initial states. The proposed technique is illustrated by a specific linear control system of differential equations with delay.
Keywords: control, incomplete information, linear systems with delay.
@article{TIMM_2016_22_2_a28,
     author = {P. G. Surkov},
     title = {The problem of closed-loop guidance by a given time for a linear control system with delay},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {267--276},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a28/}
}
TY  - JOUR
AU  - P. G. Surkov
TI  - The problem of closed-loop guidance by a given time for a linear control system with delay
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 267
EP  - 276
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a28/
LA  - ru
ID  - TIMM_2016_22_2_a28
ER  - 
%0 Journal Article
%A P. G. Surkov
%T The problem of closed-loop guidance by a given time for a linear control system with delay
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 267-276
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a28/
%G ru
%F TIMM_2016_22_2_a28
P. G. Surkov. The problem of closed-loop guidance by a given time for a linear control system with delay. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 2, pp. 267-276. http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a28/