The problem of closed-loop guidance by a given time for a linear control system with delay
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 2, pp. 267-276 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The problem of guaranteed closed-loop guidance by a given time under incomplete information on the initial state is studied for a dynamical control system with delay by means of the method of open-loop control packages. A solvability criterion is proved for this problem in the case of a finite set of admissible initial states. The proposed technique is illustrated by a specific linear control system of differential equations with delay.
Keywords: control, incomplete information, linear systems with delay.
@article{TIMM_2016_22_2_a28,
     author = {P. G. Surkov},
     title = {The problem of closed-loop guidance by a given time for a linear control system with delay},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {267--276},
     year = {2016},
     volume = {22},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a28/}
}
TY  - JOUR
AU  - P. G. Surkov
TI  - The problem of closed-loop guidance by a given time for a linear control system with delay
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 267
EP  - 276
VL  - 22
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a28/
LA  - ru
ID  - TIMM_2016_22_2_a28
ER  - 
%0 Journal Article
%A P. G. Surkov
%T The problem of closed-loop guidance by a given time for a linear control system with delay
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 267-276
%V 22
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a28/
%G ru
%F TIMM_2016_22_2_a28
P. G. Surkov. The problem of closed-loop guidance by a given time for a linear control system with delay. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 2, pp. 267-276. http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a28/

[1] Kurzhanskii A.B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977, 392 pp. | MR

[2] Krasovskii N.N., Igrovye zadachi o vstreche dvizhenii, Nauka, M., 1970, 420 pp. | MR

[3] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR

[4] Subbotin A.I., Chentsov A.G., Optimizatsiya garantii v zadachakh upravleniya, Nauka, M., 1981, 288 pp. | MR

[5] Grigorenko N.L., Matematicheskie metody upravleniya neskolkimi dinamicheskimi protsessami, MAKS Press, M., 1990

[6] Osipov Yu.S., “Pakety programm: podkhod k resheniyu zadach pozitsionnogo upravleniya s nepolnoi informatsiei”, Uspekhi mat. nauk, 61:4(370) (2006), 25–76 | DOI | Zbl

[7] Kryazhimskii A.V., Osipov Yu.S., “Idealizirovannye pakety programm i zadachi pozitsionnogo upravleniya s nepolnoi informatsiei”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15:3 (2009), 139–157

[8] Kryazhimskii A.V., Strelkovskii N.V., “Programmnyi kriterii razreshimosti zadachi pozitsionnogo navedeniya s nepolnoi informatsiei. Lineinye upravlyaemye sistemy”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:3 (2014), 132–147 | MR

[9] Kryazhimskii A.V., Strelkovskii N.V., “Zadacha garantirovannogo pozitsionnogo navedeniya lineinoi upravlyaemoi sistemy k zadannomu momentu vremeni pri nepolnoi informatsii. Programmnyi kriterii razreshimosti”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:4 (2014), 168–177 | MR

[10] Maksimov V.I., “Zadacha nakhozhdeniya garantiruyuschego programmnogo upravleniya pri nepolnoi informatsii dlya lineinoi sistemy”, Differents. uravneniya, 51:12 (2015), 1676–1685 | DOI | MR | Zbl

[11] Rozenberg V.L., “Ob odnoi zadache upravleniya pri defitsite informatsii dlya lineinogo stokhasticheskogo differentsialnogo uravneniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 21:3 (2015), 292–302 | MR

[12] Grigorenko N.L., Kondrateva Yu.A., Lukyanova L.N., “Zadacha nakhozhdeniya garantiruyuschego programmnogo upravleniya pri nepolnoi informatsii dlya lineinoi sistemy”, Tr. In-ta matematiki i mekhaniki UrO RAN, 21:2 (2015), 41–49 | MR

[13] Krasovskii N.N., Nekotorye zadachi teorii ustoichivosti dvizheniya, Fizmatgiz, M., 1959, 211 pp. | MR

[14] Krasovskii N.N., “Ob analiticheskom konstruirovanii optimalnogo regulyatora v sisteme s zapazdyvaniyami vremeni”, Prikl. matematika i mekhanika, 26:1 (1962), 39–51 | MR

[15] Kheil Dzh., Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984, 424 pp. | MR