The method of characteristics in an identification problem
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 2, pp. 255-266 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the problem of identifying the parameters of a dynamic system from a noisy history of measuring the phase trajectory. We propose a new approach to the solution based on the construction of an auxiliary optimal control problem such that its extremals approximate the measurement history with a given accuracy. Using the solutions of the corresponding characteristic system, we obtain estimates for the residual, which is the difference between the coordinates of the extremals and the measurements of the phase trajectory. An estimate for the result of identifying the parameters of the dynamic system is obtained. An illustrative numerical example is given.
Mots-clés : identification
Keywords: residual functional, Hamilton-Jacobi-Bellman equation, characteristic system.
@article{TIMM_2016_22_2_a27,
     author = {N. N. Subbotina and E. A. Krupennikov},
     title = {The method of characteristics in an identification problem},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {255--266},
     year = {2016},
     volume = {22},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a27/}
}
TY  - JOUR
AU  - N. N. Subbotina
AU  - E. A. Krupennikov
TI  - The method of characteristics in an identification problem
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 255
EP  - 266
VL  - 22
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a27/
LA  - ru
ID  - TIMM_2016_22_2_a27
ER  - 
%0 Journal Article
%A N. N. Subbotina
%A E. A. Krupennikov
%T The method of characteristics in an identification problem
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 255-266
%V 22
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a27/
%G ru
%F TIMM_2016_22_2_a27
N. N. Subbotina; E. A. Krupennikov. The method of characteristics in an identification problem. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 2, pp. 255-266. http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a27/

[1] Polyak B.T., Vvedenie v optimizatsiyu, Nauka, M., 1983, 384 pp. | MR

[2] Spravochnik po teorii avtomaticheskogo upravleniya, ed. A.A. Krasovskii, Nauka, M., 1987, 712 pp.

[3] N.N. Subbotina, E.A. Kolpakova, T.B. Tokmantsev, L.G. Shagalova, Metod kharakteristik dlya uravneniya Gamiltona - Yakobi - Bellmana, RIO UrO RAN, Ekaterinburg, 2013, 244 pp.

[4] Subbotina N.N., Tokmantsev T.B., “Issledovanie ustoichivosti resheniya obratnykh zadach dinamiki upravlyaemykh sistem po otnosheniyu k vozmuscheniyam vkhodnykh dannykh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:3 (2014), 218–233 | MR

[5] Kryazhimskii A.V., Osipov Yu.S., “O modelirovanii upravleniya v dinamicheskoi sisteme”, Izv. AN SSSR. Tekhn. kibernetika, 1983, no. 2, 51–60 | MR

[6] Osipov Yu.S., Kryazhimskii A.V., Inverse problems for ordinary differential equations: Dynamical solutions, Gordon and Breach, London, 1995, 625 pp. | MR | Zbl

[7] Krasovskii N.N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 476 pp. | MR

[8] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR

[9] Tikhonov A.N., “Ob ustoichivosti obratnykh zadach”, Dokl. AN SSSR, 39:4 (1943), 195–198 | MR

[10] L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, E.F. Mischenko, Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1961, 391 pp. | MR

[11] Subbotin A.I., Obobschennye resheniya uravnenii v chastnykh proizvodnykh pervogo poryadka: Perspektivy dinamicheskoi optimizatsii, In-t kompyuter. issledovanii, M.; Izhevsk, 2003, 336 pp.

[12] Subbotina N.N., Tokmantsev T.B., Krupennikov E.F., “K resheniyu obratnykh zadach dinamiki lineino upravlyaemykh sistem metodom otritsatelnoi nevyazki”, Tr. MIAN, 291 (2015), 266–275 | MR | Zbl

[13] Krupennikov E.A., “K obosnovaniyu metoda resheniya zadachi rekonstruktsii dinamiki makroekonomicheskoi modeli”, Tr. In-ta matematiki i mekhaniki UrO RAN, 21:2 (2015), 102–114 | MR

[14] Barbashin E.A., Vvedenie v teoriyu ustoichivosti, Nauka, M., 1967, 225 pp.