On uniform Lebesgue constants of third-order local trigonometric splines
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 2, pp. 245-254

Voir la notice de l'article provenant de la source Math-Net.Ru

For the linear differential third-order operator $\mathcal {L}_3(D)=D(D^2+\alpha^2)$ ($\alpha>0$), Lebesgue constants (the norms of linear operators from $C$ to $C$) are calculated exactly for two types of local (noninterpolational) trigonometric splines with uniform knots.
Mots-clés : Lebesgue constants
Keywords: trigonometric splines, differential operators of the third order.
@article{TIMM_2016_22_2_a26,
     author = {E. V. Strelkova and V. T. Shevaldin},
     title = {On uniform {Lebesgue} constants of third-order local trigonometric splines},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {245--254},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a26/}
}
TY  - JOUR
AU  - E. V. Strelkova
AU  - V. T. Shevaldin
TI  - On uniform Lebesgue constants of third-order local trigonometric splines
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 245
EP  - 254
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a26/
LA  - ru
ID  - TIMM_2016_22_2_a26
ER  - 
%0 Journal Article
%A E. V. Strelkova
%A V. T. Shevaldin
%T On uniform Lebesgue constants of third-order local trigonometric splines
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 245-254
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a26/
%G ru
%F TIMM_2016_22_2_a26
E. V. Strelkova; V. T. Shevaldin. On uniform Lebesgue constants of third-order local trigonometric splines. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 2, pp. 245-254. http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a26/