Reconstruction of external actions under incomplete information in a linear stochastic equation
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 2, pp. 236-244 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The problem of reconstructing unknown external actions in a linear stochastic differential equation is investigated on the basis of the approach of the theory of dynamic inversion. We consider the statement when the simultaneous reconstruction of disturbances in the deterministic and stochastic terms of the equation is performed with the use of discrete information on a number of realizations of a part of coordinates of the stochastic process. The problem is reduced to an inverse problem for systems of ordinary differential equations describing the mathematical expectation and covariance matrix of the original process. A finite-step software-oriented solution algorithm based on the method of auxiliary controlled models is proposed. We derive an estimate for its convergence rate with respect to the number of measured realizations.
Mots-clés : dynamical reconstruction
Keywords: stochastic differential equation, controlled model.
@article{TIMM_2016_22_2_a25,
     author = {V. L. Rozenberg},
     title = {Reconstruction of external actions under incomplete information in a linear stochastic equation},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {236--244},
     year = {2016},
     volume = {22},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a25/}
}
TY  - JOUR
AU  - V. L. Rozenberg
TI  - Reconstruction of external actions under incomplete information in a linear stochastic equation
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 236
EP  - 244
VL  - 22
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a25/
LA  - ru
ID  - TIMM_2016_22_2_a25
ER  - 
%0 Journal Article
%A V. L. Rozenberg
%T Reconstruction of external actions under incomplete information in a linear stochastic equation
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 236-244
%V 22
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a25/
%G ru
%F TIMM_2016_22_2_a25
V. L. Rozenberg. Reconstruction of external actions under incomplete information in a linear stochastic equation. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 2, pp. 236-244. http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a25/

[1] Osipov Yu.S., Kryazhimskii A.V., Inverse problems for ordinary differential equations: dynamical solutions, Gordon and Breach, L., 1995, 625 pp. | MR | Zbl

[2] Kryazhimskii A.V., Osipov Yu.S., “O modelirovanii upravleniya v dinamicheskoi sisteme”, Izv. AN SSSR. Tekhn. kibernetika, 1983, no. 2, 51–60 | MR

[3] Maksimov V.I., Zadachi dinamicheskogo vosstanovleniya vkhodov beskonechnomernykh sistem, Izd-vo UrO RAN, Ekaterinburg, 2000, 305 pp.

[4] Kryazhimskii A.V., Osipov Yu.S., “Ob ustoichivom pozitsionnom vosstanovlenii upravleniya po izmereniyam chasti koordinat”, Nekotorye zadachi upravleniya i ustoichivosti, UrO AN SSSR, Sverdlovsk, 1989, 33–47 | MR

[5] Osipov Yu.S., Kryazhimskii A.V., Maksimov V.I., “Nekotorye algoritmy vosstanovleniya vkhodov”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17:1 (2011), 129–161 | Zbl

[6] Blizorukova M.S., Maksimov V.I., “Ob odnom algoritme rekonstruktsii traektorii i upravleniya v sisteme s zapazdyvaniem”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18:1 (2012), 109–122 | MR

[7] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1984, 456 pp. | MR

[8] Tikhonov A.N., Arsenin V.Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1978, 142 pp.

[9] Osipov Yu.S., Kryazhimskii A.V., “Pozitsionnoe modelirovanie stokhasticheskogo upravleniya v dinamicheskikh sistemakh”, Dokl. Mezhdunar. konf. po stokhasticheskoi optimizatsii, Kiev, 1984, 43–45

[10] Rozenberg V.L., “Zadacha dinamicheskogo vosstanovleniya neizvestnoi funktsii v lineinom stokhasticheskom differentsialnom uravnenii”, Avtomatika i telemekhanika, 2007, no. 11, 76–87 | MR | Zbl

[11] Rozenberg V.L., “Zadacha rekonstruktsii vozmuscheniya v lineinom stokhasticheskom uravnenii: sluchai nepolnoi informatsii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:4 (2013), 214–221 | MR

[12] Shiryaev A.N., Veroyatnost, statistika, sluchainye protsessy, v. I, II, Izdatelstvo Mosk. un-ta, M., 1974, 628 pp.

[13] Oksendal B., Stokhasticheskie differentsialnye uravneniya. Vvedenie v teoriyu i prilozheniya, Mir, M., 2003, 408 pp.

[14] V.S. Korolyuk, N.I. Portenko, A.V. Skorokhod, A.F. Turbin, Spravochnik po teorii veroyatnostei i matematicheskoi statistike, Nauka, M., 1985, 640 pp. | MR

[15] Pugachev V.S., Sinitsyn I.N., Stokhasticheskie differentsialnye sistemy, Nauka, M., 1990, 642 pp. | MR

[16] Rozenberg V.L., “A control problem under incomplete information for a linear stochastic differential equation”, Ural Math. J., 1:1 (2015), 68–82 | DOI

[17] Gantmakher F.R., Teoriya matrits, Nauka, M., 1988, 548 pp. | MR

[18] Vdovin A.Yu., K zadache vosstanovleniya vozmuscheniya v dinamicheskoi sisteme, dis...kand. fiz.-mat. nauk, Sverdlovsk, 1989, 117 pp.