Mots-clés : interpolation, extrapolation, convergence order.
@article{TIMM_2016_22_2_a23,
author = {V. G. Pimenov and A. S. Hendy},
title = {An implicit numerical method for the solution of the fractional advection-diffusion equation with delay},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {218--226},
year = {2016},
volume = {22},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a23/}
}
TY - JOUR AU - V. G. Pimenov AU - A. S. Hendy TI - An implicit numerical method for the solution of the fractional advection-diffusion equation with delay JO - Trudy Instituta matematiki i mehaniki PY - 2016 SP - 218 EP - 226 VL - 22 IS - 2 UR - http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a23/ LA - ru ID - TIMM_2016_22_2_a23 ER -
%0 Journal Article %A V. G. Pimenov %A A. S. Hendy %T An implicit numerical method for the solution of the fractional advection-diffusion equation with delay %J Trudy Instituta matematiki i mehaniki %D 2016 %P 218-226 %V 22 %N 2 %U http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a23/ %G ru %F TIMM_2016_22_2_a23
V. G. Pimenov; A. S. Hendy. An implicit numerical method for the solution of the fractional advection-diffusion equation with delay. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 2, pp. 218-226. http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a23/
[1] Podlubny I., Fractional differential equations, Acad. Press, San Diego, 1999, 368 pp. | MR | Zbl
[2] Kilbas A., Srivastava H., Trujillo J., Theory and applications of fractional differential equations, Elsevier, Amsterdam, 2006, 524 pp. | MR | Zbl
[3] Meerschaert M.M., Tadjeran C., “Finite difference approximations for two sided space fractional partial differential equations”, Appl. Numer. Math., 56:1 (2006), 80–90 | DOI | MR | Zbl
[4] Liu F., Zhuang P., Burrage K., “Numerical methods and analysis for a class of fractional advection-dispersion models”, Comput. Math. Appl., 64:10 (2012), 2990–3007 | DOI | MR | Zbl
[5] Wu J., Theory and applications of partial functional differential equations, Springer-Verlag, New York, 1996, 438 pp. | MR | Zbl
[6] Pimenov V.G., Raznostnye metody resheniya uravnenii v chastnykh proizvodnykh s nasledstvennostyu, Izd. Uralskogo un-ta, Ekaterinburg, 2014, 134 pp.
[7] Kim A.V., Pimenov V.G., i-Gladkii analiz i chislennye metody resheniya funktsionalno-differentsialnykh uravnenii, RKhD, M.; Izhevsk, 2004, 256 pp.
[8] Pimenov V.G., “Obschie lineinye metody chislennogo resheniya funktsionalno-differentsialnykh uravnenii”, Differents. uravneniya, 37:1 (2001), 105–114 | MR | Zbl
[9] Pimenov V.G., Lozhnikov A.B., “Raznostnye skhemy chislennogo resheniya uravneniya teploprovodnosti s posledeistviem”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17:1 (2011), 178–189 | Zbl
[10] Pimenov V.G., Hendy A.S., “Numerical methods for the equation with fractional derivative on state and with functional delay on time”, Vestn. Tambov. un-ta. Ser.: Estestvennye i tekhnicheskie nauki, 20:5 (2015), 1358–1361