An implicit numerical method for the solution of the fractional advection-diffusion equation with delay
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 2, pp. 218-226 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A technique for constructing difference schemes for time- and space-fractional partial differential equations with time delay is considered. Shifted Grünwald–Letnikov formulas and the L1-algorithm are used for the approximation of space-fractional and time-fractional derivatives, respectively. We also use piecewise constant interpolation and extrapolation by extending the model prehistory in time. The algorithm is an analog of the pure implicit numerical method and reduces to the solution of linear algebraic systems at each time step. The order of convergence is obtained. Numerical experiments are carried out to support the obtained theoretical results.
Keywords: fractional differential equation, functional delay, grid schemes
Mots-clés : interpolation, extrapolation, convergence order.
@article{TIMM_2016_22_2_a23,
     author = {V. G. Pimenov and A. S. Hendy},
     title = {An implicit numerical method for the solution of the fractional advection-diffusion equation with delay},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {218--226},
     year = {2016},
     volume = {22},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a23/}
}
TY  - JOUR
AU  - V. G. Pimenov
AU  - A. S. Hendy
TI  - An implicit numerical method for the solution of the fractional advection-diffusion equation with delay
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 218
EP  - 226
VL  - 22
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a23/
LA  - ru
ID  - TIMM_2016_22_2_a23
ER  - 
%0 Journal Article
%A V. G. Pimenov
%A A. S. Hendy
%T An implicit numerical method for the solution of the fractional advection-diffusion equation with delay
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 218-226
%V 22
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a23/
%G ru
%F TIMM_2016_22_2_a23
V. G. Pimenov; A. S. Hendy. An implicit numerical method for the solution of the fractional advection-diffusion equation with delay. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 2, pp. 218-226. http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a23/

[1] Podlubny I., Fractional differential equations, Acad. Press, San Diego, 1999, 368 pp. | MR | Zbl

[2] Kilbas A., Srivastava H., Trujillo J., Theory and applications of fractional differential equations, Elsevier, Amsterdam, 2006, 524 pp. | MR | Zbl

[3] Meerschaert M.M., Tadjeran C., “Finite difference approximations for two sided space fractional partial differential equations”, Appl. Numer. Math., 56:1 (2006), 80–90 | DOI | MR | Zbl

[4] Liu F., Zhuang P., Burrage K., “Numerical methods and analysis for a class of fractional advection-dispersion models”, Comput. Math. Appl., 64:10 (2012), 2990–3007 | DOI | MR | Zbl

[5] Wu J., Theory and applications of partial functional differential equations, Springer-Verlag, New York, 1996, 438 pp. | MR | Zbl

[6] Pimenov V.G., Raznostnye metody resheniya uravnenii v chastnykh proizvodnykh s nasledstvennostyu, Izd. Uralskogo un-ta, Ekaterinburg, 2014, 134 pp.

[7] Kim A.V., Pimenov V.G., i-Gladkii analiz i chislennye metody resheniya funktsionalno-differentsialnykh uravnenii, RKhD, M.; Izhevsk, 2004, 256 pp.

[8] Pimenov V.G., “Obschie lineinye metody chislennogo resheniya funktsionalno-differentsialnykh uravnenii”, Differents. uravneniya, 37:1 (2001), 105–114 | MR | Zbl

[9] Pimenov V.G., Lozhnikov A.B., “Raznostnye skhemy chislennogo resheniya uravneniya teploprovodnosti s posledeistviem”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17:1 (2011), 178–189 | Zbl

[10] Pimenov V.G., Hendy A.S., “Numerical methods for the equation with fractional derivative on state and with functional delay on time”, Vestn. Tambov. un-ta. Ser.: Estestvennye i tekhnicheskie nauki, 20:5 (2015), 1358–1361