On a guaranteed guidance problem under incomplete information
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 2, pp. 199-210

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss the problem of guaranteed guidance of a linear control system by a fixed time under the assumption that the system is subject to an unknown disturbance. We consider the case when a part of state coordinates are measured and the set of unknown initial states is finite. We specify a solution algorithm based on the combination of the package approach, the theory of dynamic inversion, and the extremal shift method.
Keywords: guidance problem, linear system.
@article{TIMM_2016_22_2_a21,
     author = {V. I. Maksimov},
     title = {On a guaranteed guidance problem under incomplete information},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {199--210},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a21/}
}
TY  - JOUR
AU  - V. I. Maksimov
TI  - On a guaranteed guidance problem under incomplete information
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 199
EP  - 210
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a21/
LA  - ru
ID  - TIMM_2016_22_2_a21
ER  - 
%0 Journal Article
%A V. I. Maksimov
%T On a guaranteed guidance problem under incomplete information
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 199-210
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a21/
%G ru
%F TIMM_2016_22_2_a21
V. I. Maksimov. On a guaranteed guidance problem under incomplete information. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 2, pp. 199-210. http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a21/