On a guaranteed guidance problem under incomplete information
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 2, pp. 199-210 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We discuss the problem of guaranteed guidance of a linear control system by a fixed time under the assumption that the system is subject to an unknown disturbance. We consider the case when a part of state coordinates are measured and the set of unknown initial states is finite. We specify a solution algorithm based on the combination of the package approach, the theory of dynamic inversion, and the extremal shift method.
Keywords: guidance problem, linear system.
@article{TIMM_2016_22_2_a21,
     author = {V. I. Maksimov},
     title = {On a guaranteed guidance problem under incomplete information},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {199--210},
     year = {2016},
     volume = {22},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a21/}
}
TY  - JOUR
AU  - V. I. Maksimov
TI  - On a guaranteed guidance problem under incomplete information
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 199
EP  - 210
VL  - 22
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a21/
LA  - ru
ID  - TIMM_2016_22_2_a21
ER  - 
%0 Journal Article
%A V. I. Maksimov
%T On a guaranteed guidance problem under incomplete information
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 199-210
%V 22
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a21/
%G ru
%F TIMM_2016_22_2_a21
V. I. Maksimov. On a guaranteed guidance problem under incomplete information. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 2, pp. 199-210. http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a21/

[1] Krasovskii N.N., Igrovye zadachi o vstreche dvizhenii, Nauka, M., 1970, 420 pp. | MR

[2] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR

[3] Subbotin A.I., Chentsov A.G., Optimizatsiya garantii v zadachakh upravleniya, Nauka, M., 1981, 288 pp. | MR

[4] Ushakov V.N., “K zadache postroeniya stabilnykh mostov v differentsirovannoi igre sblizheniya-ukloneniya”, Izv. AN SSSR. Tekhn. kibernetika, 1980, no. 4, 29–36 | MR | Zbl

[5] Osipov Yu.S., Kryazhimskii A.V., Inverse problems for ordinary differential equations: dynamical solutions, Gordon and Breach, Basel, 1995, 625 pp. | MR | Zbl

[6] Maksimov V.I., Zadachi dinamicheskogo vosstanovleniya vkhodov beskonechnomernykh sistem, Izd-vo UrO RAN, Ekaterinburg, 2000, 305 pp.

[7] Osipov Yu.S., Kryazhimskii A.V., Maksimov V.I., Metody dinamicheskogo vosstanovleniya vkhodov upravlyaemykh sistem, Izd-vo UrO RAN, Ekaterinburg, 2011, 292 pp.

[8] Osipov Yu.S., “Pakety programm: podkhod k resheniyu zadach pozitsionnogo upravleniya s nepolnoi informatsiei”, Uspekhi mat. nauk, 61:4 (2006), 25–76 | DOI | Zbl

[9] Kryazhimskii A.V., Osipov Yu.S., “O razreshimosti zadach garantiruyuschego upravleniya dlya chastichno nablyudaemykh lineinykh dinamicheskikh sistem”, Tr. MIAN, 277 (2012), 152–167 | MR

[10] Kryazhimskii A.V., Strelkovskii N.V., “Programmnyi kriterii razreshimosti zadachi pozitsionnogo navedeniya s nepolnoi informatsiei. Lineinye upravlyaemye sistemy”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:3 (2014), 132–147 | MR

[11] Strelkovskii N.V., “Postroenie strategii garantirovannogo pozitsionnogo navedeniya dlya lineinoi upravlyaemoi sistemy pri nepolnoi informatsii”, Vest. MGU. Vychislitelnaya matematika i kibernetika, 2015, no. 3, 65–72 | MR

[12] Kryazhimskii A.V., Maksimov V.I., “O sochetanii protsessov rekonstruktsii i garantirovannogo upravleniya”, Avtomatika i telemekhanika, 2013, no. 8, 26–34 | MR

[13] Blizorukova M.S., Maksimov V.I., “Ob odnoi zadache upravleniya pri nepolnoi informatsii”, Avtomatika i telemekhanika, 2006, no. 3, 131–142 | MR | Zbl

[14] Kappel F., Kryazhimskii A.V., Maksimov V.I., “Dinamicheskaya rekonstruktsiya sostoyanii i garantiruyuschee upravlenie sistemoi reaktsii-diffuzii”, Dokl. RAN, 370:5 (2000), 597–603 | MR

[15] Maksimov V.I., “Ob odnom algoritme rekonstruktsii vkhodnykh vozdeistvii v lineinykh sistemakh”, Izv. RAN. Teoriya i sistemy upravleniya, 2009, no. 3, 16–25 | MR

[16] Maksimov V.I., “Ob otslezhivanii traektorii dinamicheskoi sistemy”, Prikladnaya matematika i mekhanika, 75:6 (2011), 951–960 | MR | Zbl