Existence of an optimal control in infinite-horizon problems with unbounded set of control constraints
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 2, pp. 18-27 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a class of infinite-horizon optimal control problems with not necessarily bounded set of control constraints. Sufficient conditions for the existence of an optimal control are derived in the general nonlinear case by means of finite-horizon approximations and the tools of the Pontryagin maximum principle. Conditions guaranteeing the uniform local boundedness of optimal controls are also obtained.
Keywords: optimal control, infinite horizon, unbounded controls, the Pontryagin maximum principle.
Mots-clés : existence of a solution
@article{TIMM_2016_22_2_a2,
     author = {S. M. Aseev},
     title = {Existence of an optimal control in infinite-horizon problems with unbounded set of control constraints},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {18--27},
     year = {2016},
     volume = {22},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a2/}
}
TY  - JOUR
AU  - S. M. Aseev
TI  - Existence of an optimal control in infinite-horizon problems with unbounded set of control constraints
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 18
EP  - 27
VL  - 22
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a2/
LA  - ru
ID  - TIMM_2016_22_2_a2
ER  - 
%0 Journal Article
%A S. M. Aseev
%T Existence of an optimal control in infinite-horizon problems with unbounded set of control constraints
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 18-27
%V 22
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a2/
%G ru
%F TIMM_2016_22_2_a2
S. M. Aseev. Existence of an optimal control in infinite-horizon problems with unbounded set of control constraints. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 2, pp. 18-27. http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a2/

[1] Alekseev V.M., Tikhomirov V.M., Fomin S.V., Optimalnoe upravlenie, Nauka, M., 1979, 429 pp. | MR

[2] Aseev S.M., “Sopryazhennye peremennye i mezhvremennye tseny v zadachakh optimalnogo upravleniya na beskonechnom intervale vremeni”, Tr. MIAN, 290 (2015), 239–253 | Zbl

[3] Aseev S.M., “Ob ogranichennosti optimalnykh upravlenii v zadachakh na beskonechnom intervale vremeni”, Tr. MIAN, 291 (2015), 45–55 | MR | Zbl

[4] Aseev S.M., Besov K.O., Kryazhimskii A.V., “Zadachi optimalnogo upravleniya na beskonechnom intervale vremeni v ekonomike”, Uspekhi mat. nauk, 67:2 (2012), 3–64 | DOI | MR | Zbl

[5] Aseev S.M., Kryazhimskii A.V., “Printsip maksimuma Pontryagina i zadachi optimalnogo ekonomicheskogo rosta”, Tr. MIAN, 257 (2007), 5–271 | MR | Zbl

[6] Besov K.O., “O neobkhodimykh usloviyakh optimalnosti dlya zadach ekonomicheskogo rosta s beskonechnym gorizontom i lokalno neogranichennoi funktsiei mgnovennoi poleznosti”, Tr. MIAN, 284 (2014), 56–88 | Zbl

[7] Dmitruk A.V., Kuzkina N.V., “Teorema suschestvovaniya optimalnogo upravleniya na beskonechnom intervale vremeni”, Mat. zametki, 78:4 (2005), 503–518 ; “Письмо в редакцию”, Мат. заметки, 80:2 (2006), 320 | DOI | MR | Zbl | DOI | MR

[8] L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, E.F. Mischenko, Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961, 391 pp. | MR

[9] Filippov A.F., “O nekotorykh voprosakh teorii optimalnogo regulirovaniya”, Vestn. Mosk. un-ta. Ser. mat., mekh., astron., fiz., khim., 1959, no. 2, 25–32 | Zbl

[10] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970, 720 pp. | MR

[11] Acemoglu D., Introduction to modern economic growth, Princeton Univ. Press, New York, 2008, 1008 pp.

[12] Aseev S., Besov K., Kaniovski S., “The problem of optimal endogenous growth with exhaustible resources revisited”, Green growth and sustainable development, Dyn. Model. Econom. Econ. Finance, 14, eds. J. Crespo Cuaresma, T. Palokangas, A. Tarasyev, Springer, Heidelberg, 2013, 3–30 | MR

[13] Aseev S.M., Kryazhimskiy A.V., “The Pontryagin maximum principle and transversality conditions for a class of optimal control problems with infinite time horizons”, SIAM J. Control Optim., 43:3 (2004), 1094–1119 | DOI | MR | Zbl

[14] Aseev S.M., Veliov V.M., “Maximum principle for infinite-horizon optimal control problems with dominating discount”, Dyn. Contin. Discrete Impuls. Syst. Ser. B: Appl. Algorithms, 19:1-2 (2012), 43–63 | MR | Zbl

[15] Aseev S.M., Veliov V.M., “Needle variations in infinite-horizon optimal control”, Variational and Optimal Control Problems on Unbounded Domains: Contemp. Math., 619, eds. G. Wolansky, A.J. Zaslavski, Amer. Math. Soc., Providence, 2014, 1–17 | MR | Zbl

[16] Aseev S.M., Veliov V.M., “Maximum principle for infinite-horizon optimal control problems under weak regularity assumptions”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:3 (2014), 41–57 | MR

[17] Balder E.J., “An existence result for optimal economic growth problems”, J. Math. Anal. Appl., 95:1 (1983), 195–213 | DOI | MR | Zbl

[18] Barro R.J., Sala-i-Martin X., Economic growth, McGraw Hill, New York, 1995, 539 pp.

[19] Carlson D.A., Haurie A.B., Leizarowitz A., Infinite horizon optimal control: Determenistic and stochastic systems, Springer-Verlag, Berlin, 1991, 332 pp. | MR

[20] Cesari L., Optimization – theory and applications. Problems with ordinary differential equations, Appl. Math., 17, Springer, New York, 1983, 542 pp. | MR | Zbl

[21] Clarke F.H., Vinter R.B., “Regularity properties of optimal controls”, SIAM J. Control Optim., 28:4 (1990), 980–997 | DOI | MR | Zbl

[22] T. Manzoor, S. Aseev, E. Rovenskaya, A. Muhammad, “Optimal control for sustainable consumption of natural resources”, Proc. 19th IFAC World Congress, eds. E. Boje, X. Xia, 2014, 10725–10730

[23] Sarychev A.V., Torres D.F.M., “Lipschitzian regularity of minimizers for optimal control problems with control-affine dynamics”, Appl. Math. Optim., 41:2 (2000), 237–254 | DOI | MR | Zbl

[24] Torres D.F.M., “Regularity of minimizers in optimal control”, Equadiff 10 CD ROM, Proc. Czechoslovak International Conference on Differential Equations and their Applications, eds. J. Kuben, J. Vosmansky, Masaryk University Publishing House, Brno, 2002, 397–412

[25] Zaslavski A.J., “Existence and uniform boundedness of optimal solutions of variational problems”, Abstr. Appl. Anal., 3:3-4 (1998), 265–292 | DOI | MR