Existence of an optimal control in infinite-horizon problems with unbounded set of control constraints
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 2, pp. 18-27

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a class of infinite-horizon optimal control problems with not necessarily bounded set of control constraints. Sufficient conditions for the existence of an optimal control are derived in the general nonlinear case by means of finite-horizon approximations and the tools of the Pontryagin maximum principle. Conditions guaranteeing the uniform local boundedness of optimal controls are also obtained.
Keywords: optimal control, infinite horizon, unbounded controls, the Pontryagin maximum principle.
Mots-clés : existence of a solution
@article{TIMM_2016_22_2_a2,
     author = {S. M. Aseev},
     title = {Existence of an optimal control in infinite-horizon problems with unbounded set of control constraints},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {18--27},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a2/}
}
TY  - JOUR
AU  - S. M. Aseev
TI  - Existence of an optimal control in infinite-horizon problems with unbounded set of control constraints
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 18
EP  - 27
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a2/
LA  - ru
ID  - TIMM_2016_22_2_a2
ER  - 
%0 Journal Article
%A S. M. Aseev
%T Existence of an optimal control in infinite-horizon problems with unbounded set of control constraints
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 18-27
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a2/
%G ru
%F TIMM_2016_22_2_a2
S. M. Aseev. Existence of an optimal control in infinite-horizon problems with unbounded set of control constraints. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 2, pp. 18-27. http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a2/