Stabilizers of vertices of graphs with primitive automorphism groups and a strong version of the Sims conjecture. II
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 2, pp. 177-187 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This is the second in a series of papers whose results imply the validity of a strengthened version of the Sims conjecture on finite primitive permutation groups. In this paper, the case of primitive groups with simple socle of exceptional Lie type and non-parabolic point stabilizer is considered.
Keywords: finite primitive permutation group, almost simple group, group of exceptional Lie type, stabilizer of a point, Sims conjecture.
@article{TIMM_2016_22_2_a19,
     author = {A. S. Kondrat'ev and V. I. Trofimov},
     title = {Stabilizers of vertices of graphs with primitive automorphism groups and a strong version of the {Sims} conjecture. {II}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {177--187},
     year = {2016},
     volume = {22},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a19/}
}
TY  - JOUR
AU  - A. S. Kondrat'ev
AU  - V. I. Trofimov
TI  - Stabilizers of vertices of graphs with primitive automorphism groups and a strong version of the Sims conjecture. II
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 177
EP  - 187
VL  - 22
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a19/
LA  - ru
ID  - TIMM_2016_22_2_a19
ER  - 
%0 Journal Article
%A A. S. Kondrat'ev
%A V. I. Trofimov
%T Stabilizers of vertices of graphs with primitive automorphism groups and a strong version of the Sims conjecture. II
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 177-187
%V 22
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a19/
%G ru
%F TIMM_2016_22_2_a19
A. S. Kondrat'ev; V. I. Trofimov. Stabilizers of vertices of graphs with primitive automorphism groups and a strong version of the Sims conjecture. II. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 2, pp. 177-187. http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a19/

[1] Burbaki N., Gruppy i algebry Li, Mir, M., 1972, 334 pp. | MR

[2] Karter P., “Klassy sopryazhennykh elementov v gruppe Veilya”, Seminar po algebraicheskim gruppam, sb., Mir, M., 1973, 288–306 | MR

[3] Kondratev A.S., Trofimov V.I., “Stabilizatory vershin grafov i usilennaya versiya gipotezy Simsa”, Dokl. AN, 364:6 (1999), 741–743 | MR | Zbl

[4] Kondratev A.S., Trofimov V.I., “Stabilizatory vershin grafov s primitivnymi gruppami avtomorfizmov i usilennaya versiya gipotezy Simsa. I”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:4 (2014), 143–152 | MR

[5] Aschbacher M., “On finite groups of Lie type and odd characteristic”, J. Algebra, 66:2 (1980), 400–424 | DOI | MR | Zbl

[6] C. Jansen [et. al.], An atlas of Brauer characters, Clarendon Press, Oxford, 1995, 327 pp. | MR | Zbl

[7] J.H. Conway [et. al.], Atlas of finite groups, Clarendon Press, Oxford, 1985, 252 pp. | MR | Zbl

[8] Bray J.N., Holt D.F., Roney-Dougal C.M., The maximal subgroups of the low-dimensional finite classical groups, London Math. Soc. Lect. Note Ser., 407, Cambridge University Press, Cambridge, 2013, 438 pp. | MR | Zbl

[9] Carter R.W., Simple groups of Lie type, Wiley, London, 1972, 331 pp. | MR | Zbl

[10] Chabot P., “Groups whose Sylow $2$-subgroups have cyclic commutator groups”, J. Algebra, 19:1 (1971), 21–30 | DOI | MR | Zbl

[11] Cohen A.M., Liebeck M.W., Saxl J., Seitz G.M., “The local maximal subgroups of exceptional groups of Lie type, finite and algebraic”, Proc. London Math. Soc. (3), 64:1 (1992), 21–48 | DOI | MR

[12] Gerono G.C., “Note sur la r$\acute{e}$solution en nombres entiers et positifs de l'$\acute{e}$quation $x^m=y^n+1$”, Nouv. Ann. Math. (2), 9 (1870), 469–471

[13] Gorenstein D., Finite groups, Harper and Row, N. Y., 1968, 528 pp. | MR | Zbl

[14] Gorenstein D., Lyons R., Solomon R., The classification of the finite simple groups. Number 3. Part I, Math. Surveys Monogr., 40, no. 3, Amer. Math. Soc., Providence, RI, 1998, 420 pp. | MR

[15] Liebeck M.W., “The affine permutation groups of rank three”, Proc. London Math. Soc. (3), 54:3 (1987), 477–516 | DOI | MR | Zbl

[16] Liebeck M.W, Saxl J., “The primitive permutation groups of odd degree”, J. London Math. Soc. (II), 31:2 (1985), 250–264 | DOI | MR | Zbl

[17] Liebeck M.W, Saxl J., Seitz G.M., “Subgroups of maximal rank in finite exceptional groups of Lie type”, Proc. London Math. Soc. (3), 65:2 (1992), 297–325 | DOI | MR | Zbl

[18] Wilson R.A., “Maximal subgroups of automorphism groups of simple groups”, J. London Math. Soc.(2), 32:3 (1985), 460–466 | DOI | MR | Zbl

[19] Zsigmondy K., “Zur Theorie der Potenzreste”, Monatsh. Math. Phys., 3 (1892), 265–284. | DOI | MR | Zbl