On the property of equal ratios in the problem of boundary vector control of elastic vibrations described by Fredholm integro-differential equations
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 2, pp. 163-176 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study the nonlinear problem of optimal control of elastic vibrations described by Fredholm integro-differential equations in the case where the control is performed by boundary sources. In the study we use the notion of generalized solution of the boundary value problem for a control process. Optimality conditions in the form of systems of equalities and inequalities are obtained from the maximum principle for systems with distributed parameters. It is found that the optimality conditions in the form of equalities have the property of equal ratios. This circumstance allowed us to simplify the construction procedures both for the optimal vector control and for the complete solution of the nonlinear optimization problem. We also simplified the optimality conditions in the form of inequalities and found the components of the optimal vector control by solving only one scalar nonlinear integral equation. An algorithm is developed for the construction of solutions of the system of nonlinear integral equations and of the nonlinear optimization problem.
Keywords: generalized solution, optimal control, functional, maximum principle, system of nonlinear integral equations, property of equal ratios.
@article{TIMM_2016_22_2_a18,
     author = {A. K. Kerimbekov and E. F. Abdyldaeva},
     title = {On the property of equal ratios in the problem of boundary vector control of elastic vibrations described by {Fredholm} integro-differential equations},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {163--176},
     year = {2016},
     volume = {22},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a18/}
}
TY  - JOUR
AU  - A. K. Kerimbekov
AU  - E. F. Abdyldaeva
TI  - On the property of equal ratios in the problem of boundary vector control of elastic vibrations described by Fredholm integro-differential equations
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 163
EP  - 176
VL  - 22
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a18/
LA  - ru
ID  - TIMM_2016_22_2_a18
ER  - 
%0 Journal Article
%A A. K. Kerimbekov
%A E. F. Abdyldaeva
%T On the property of equal ratios in the problem of boundary vector control of elastic vibrations described by Fredholm integro-differential equations
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 163-176
%V 22
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a18/
%G ru
%F TIMM_2016_22_2_a18
A. K. Kerimbekov; E. F. Abdyldaeva. On the property of equal ratios in the problem of boundary vector control of elastic vibrations described by Fredholm integro-differential equations. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 2, pp. 163-176. http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a18/

[1] Volterra V., Teoriya funktsionalov, integralnykh i integro-differentsialnykh uravnenii, per. s angl., ed. P.I. Kuznetsov, Nauka, M., 1982, 304 pp. | MR

[2] Vladimirov V.S., “Matematicheskie zadachi odnoskorostnoi teorii perenosa chastits”, Tr. MIAN, 61 (1961), 3–158 | MR

[3] Egorov A.I., Optimalnoe upravlenie teplovymi i diffuzionnymi protsessami, Nauka, M., 1978, 500 pp. | MR

[4] Lions Zh.L., Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Mir, M., 1972, 414 pp. | MR

[5] Sachs E.W., Strauss A.K., “Efficient solution of partial integro-differential equation in finance”, Appl. Numer. Math., 58:11 (2008), 1687–1703 | DOI | MR | Zbl

[6] Kowalewski A., “Optimal control of an infinite order hyperbolic system with multiple time-varying lags”, Automatyka, 15 (2011), 53–65

[7] Thorwe J., Bhalekar S., “Solving partial integro-differential equations using Laplace transform method”, American J. Comput. Appl. Math., 2(3) (2012), 101–104 | DOI

[8] Khurshudyan As. Zh., “On optimal boundary and distributed control of partial integro-differential equations”, Arch. Contol. Sci., 24(60):1 (2014), 5–25 | MR | Zbl

[9] Kerimbekov A.K., “On solvability of the nonlinear optimal control problem for processes described by the semi-linear parabolic equations”, Proc. World Congress on Engineering, 1, London, 2011, 270–275

[10] Kerimbekov A.K., “On the solvability of a nonlinear optimal control problem for the thermal processes described by Fredholm integro-differential equations”, Current Trends in Analysis and Its Applications, Proc. of the 9th ISAAC Congress (Krakuw 2013), A Series of Trends in Mathematics, eds. V.V. Mityushev, M.V. Ruzhansky, Springer, London, 2015, 803–822 | DOI

[11] Komkov V., Teoriya optimalnogo upravleniya dempfirovaniem kolebanii prostykh uprugikh sistem, Mir, M., 1975, 158 pp. | MR

[12] Kerimbekov A.K., Baetov A.K., “O razreshimosti odnoi zadachi nelineinoi optimizatsii kolebatelnykh protsessov”, Aktualnye problemy prikladnoi matematiki i informatsionnykh tekhnologii - al Khorezmi 2012, materialy Mezhdunar. nauch. konf., Tashkent, 2012, 301–303

[13] Kerimbekov A.K., Kabaeva Z.S., “Reshenie zadachi optimizatsii teplovogo protsessa pri nelineino vkhodyaschem vektornom upravlenii”, Tr. VI Mezhdunar. nauch. konf., I, Aktyubinskii regionalnyi un-t im. K. Zhubanova, Aktobe, 2012, 100–104

[14] Tikhonov A.N., Samarskii A.A., Uravneniya matematicheskoi fiziki, Nauka, M., 1972, 735 pp. | MR

[15] Plotnikov V.I., “Energeticheskoe neravenstvo i svoistvo pereopredelennosti sistemy sobstvennykh funktsii.”, Izv. AN SSSR. Ser. matematicheskaya, 32:4 (1968), 743–755 | MR | Zbl

[16] Trikomi F., Integralnye uravneniya, per. s angl., ed. red. I.N. Vekua, IL, M., 1960, 301 pp. | MR

[17] Krasnov M.V., Integralnye uravneniya, Nauka, M., 1975, 303 pp. | MR

[18] Lyusternik L.A., Sobolev V.I., Elementy funktsionalnogo analiza, Nauka, M., 1965, 520 pp. | MR