On the control of a nonlinear dynamic system in a time-optimal problem with state constraints
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 2, pp. 150-162 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An optimal control problem for a nonlinear dynamic system is studied. The required control must satisfy given constraints and provide the fulfilment of a number of conditions on the current state of the system. For the construction of admissible controls in this problem, we propose an approach based on the ideas of solution of control problems with a guide. The results of numerical simulation are presented.
Keywords: dynamic system, state constraints, admissible control, guide, accompanying positions.
@article{TIMM_2016_22_2_a17,
     author = {I. N. Kandoba and I. V. Koz'min},
     title = {On the control of a nonlinear dynamic system in a time-optimal problem with state constraints},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {150--162},
     year = {2016},
     volume = {22},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a17/}
}
TY  - JOUR
AU  - I. N. Kandoba
AU  - I. V. Koz'min
TI  - On the control of a nonlinear dynamic system in a time-optimal problem with state constraints
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 150
EP  - 162
VL  - 22
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a17/
LA  - ru
ID  - TIMM_2016_22_2_a17
ER  - 
%0 Journal Article
%A I. N. Kandoba
%A I. V. Koz'min
%T On the control of a nonlinear dynamic system in a time-optimal problem with state constraints
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 150-162
%V 22
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a17/
%G ru
%F TIMM_2016_22_2_a17
I. N. Kandoba; I. V. Koz'min. On the control of a nonlinear dynamic system in a time-optimal problem with state constraints. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 2, pp. 150-162. http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a17/

[1] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR

[2] Krasovskii N.N., Upravlenie dinamicheskoi sistemoi. Zadacha o minimume garantirovannogo rezultata, Nauka, M., 1985, 520 pp. | MR

[3] Kryazhimskii A.V., Osipov Yu.S., “O modelirovanii upravleniya v dinamicheskoi sisteme”, Tekhnicheskaya kibernetika, 1983, no. 2, 51–60 | MR

[4] Okhotsimskii D.E, Sikharulidze Yu.G., Osnovy mekhaniki kosmicheskogo poleta, Nauka, M., 1990, 448 pp.

[5] Mazgalin D.V., “Postroenie sposoba upravleniya raketoi-nositelem pri ispolzovanii v kachestve upravleniya programmnykh uglovykh skorostei razvorotov”, Informatsionno-upravlyayuschie sistemy, 2010, no. 3 (46), 21–29

[6] Kostousova E.K., Pochinskii V.I., “O zadachakh vyvedeniya rakety-nositelya na zadannye ellipticheskie orbity”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17:3 (2011), 201–216

[7] Enright P.J., Conway B.A., “Discrete approximations to optimal trajectories using direct transcription and nonlinear programming”, Journal of Guidance, Control, and Dynamics, 15:4 (1992), 994–1002 | DOI | Zbl