@article{TIMM_2016_22_2_a15,
author = {A. A. Dryazhenkov and M. M. Potapov},
title = {Numerical solution of the positional boundary control problem for the wave equation with unknown initial data},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {138--146},
year = {2016},
volume = {22},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a15/}
}
TY - JOUR AU - A. A. Dryazhenkov AU - M. M. Potapov TI - Numerical solution of the positional boundary control problem for the wave equation with unknown initial data JO - Trudy Instituta matematiki i mehaniki PY - 2016 SP - 138 EP - 146 VL - 22 IS - 2 UR - http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a15/ LA - ru ID - TIMM_2016_22_2_a15 ER -
%0 Journal Article %A A. A. Dryazhenkov %A M. M. Potapov %T Numerical solution of the positional boundary control problem for the wave equation with unknown initial data %J Trudy Instituta matematiki i mehaniki %D 2016 %P 138-146 %V 22 %N 2 %U http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a15/ %G ru %F TIMM_2016_22_2_a15
A. A. Dryazhenkov; M. M. Potapov. Numerical solution of the positional boundary control problem for the wave equation with unknown initial data. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 2, pp. 138-146. http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a15/
[1] F.P. Vasilev, M.A. Kurzhanskii, M.M. Potapov, A.V. Razgulin, Priblizhennoe reshenie dvoistvennykh zadach upravleniya i nablyudeniya, MAKS Press : Izdat. otd. fak. VMK MGU im. M.V. Lomonosova, M., 2010, 384 pp.
[2] Potapov M.M., Dryazhenkov A.A., “Optimizatsiya porogovogo momenta v neravenstve nablyudaemosti dlya volnovogo uravneniya s kraevym usloviem uprugogo zakrepleniya”, Tr. MIAN, 277 (2012), 215–229 | MR | Zbl
[3] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR
[4] Ilin V.A., “O razreshimosti smeshannykh zadach dlya giperbolicheskogo i parabolicheskogo uravnenii”, Uspekhi mat. nauk, 15:2 (1960), 97–154 | MR | Zbl
[5] Osipov Yu.S., “Pakety programm: podkhod k resheniyu zadach pozitsionnogo upravleniya s nepolnoi informatsiei”, Uspekhi mat. nauk, 61:4 (2006), 25–76 | DOI | Zbl
[6] Kryazhimskii A.V., Osipov Yu.S., “Idealizirovannye pakety programm i zadachi pozitsionnogo upravleniya s nepolnoi informatsiei”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15:3 (2009), 139–157
[7] Kritskov L.V., Abdukarimov M.F., “Granichnoe upravlenie smescheniem na odnom kontse pri svobodnom vtorom dlya protsessa, opisyvaemogo telegrafnym uravneniem s peremennym koeffitsientom”, Dokl. AN, 450:6 (2013), 640–643 | MR | Zbl
[8] Kolmogorov A.N., Fomin S.V., Elementy teorii funktsii i funktsionalnogo analiza, Izd. 4-e, pererab., Nauka, M., 1976, 543 pp. | MR
[9] Ivanov D.A., Potapov M.M., “Priblizhennoe reshenie zadachi bystrodeistviya dlya volnovogo uravneniya s granichnymi upravleniyami”, Tr. MIAN, 291 (2015), 112–127 | Zbl
[10] Dryazhenkov A.A., Potapov M.M., “Konstruktivnye neravenstva nablyudaemosti dlya slabykh obobschennykh reshenii volnovogo uravneniya s usloviem uprugogo zakrepleniya”, Zhurn. vychisl. matematiki i mat. fiziki, 54:6 (2014), 928–941 | DOI | MR | Zbl
[11] Dryazhenkov A.A., “Neravenstvo nablyudaemosti dlya volnovogo uravneniya s usloviem uprugogo zakrepleniya v sluchae kriticheskogo intervala vremeni”, Vestn. Mosk. un-ta. Ser.15: Vychisl. matematika i kibernetika, 2014, no. 3, 18–22 | MR | Zbl