Numerical solution of the positional boundary control problem for the wave equation with unknown initial data
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 2, pp. 138-146 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The problem of one-sided boundary Neumann control is considered for the one-dimensional wave equation. Information about the initial state of the process is absent. Instead, the values of Dirichlet observations are received in real time at the controlled boundary. The aim is to bring the process to a complete rest by means of positional boundary controls. To solve this problem, we propose an efficient numerical algorithm with an optimal guaranteed damping time. Some results of numerical experiments are presented.
Keywords: wave equation, positional control problem, numerical solution.
@article{TIMM_2016_22_2_a15,
     author = {A. A. Dryazhenkov and M. M. Potapov},
     title = {Numerical solution of the positional boundary control problem for the wave equation with unknown initial data},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {138--146},
     year = {2016},
     volume = {22},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a15/}
}
TY  - JOUR
AU  - A. A. Dryazhenkov
AU  - M. M. Potapov
TI  - Numerical solution of the positional boundary control problem for the wave equation with unknown initial data
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 138
EP  - 146
VL  - 22
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a15/
LA  - ru
ID  - TIMM_2016_22_2_a15
ER  - 
%0 Journal Article
%A A. A. Dryazhenkov
%A M. M. Potapov
%T Numerical solution of the positional boundary control problem for the wave equation with unknown initial data
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 138-146
%V 22
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a15/
%G ru
%F TIMM_2016_22_2_a15
A. A. Dryazhenkov; M. M. Potapov. Numerical solution of the positional boundary control problem for the wave equation with unknown initial data. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 2, pp. 138-146. http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a15/

[1] F.P. Vasilev, M.A. Kurzhanskii, M.M. Potapov, A.V. Razgulin, Priblizhennoe reshenie dvoistvennykh zadach upravleniya i nablyudeniya, MAKS Press : Izdat. otd. fak. VMK MGU im. M.V. Lomonosova, M., 2010, 384 pp.

[2] Potapov M.M., Dryazhenkov A.A., “Optimizatsiya porogovogo momenta v neravenstve nablyudaemosti dlya volnovogo uravneniya s kraevym usloviem uprugogo zakrepleniya”, Tr. MIAN, 277 (2012), 215–229 | MR | Zbl

[3] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR

[4] Ilin V.A., “O razreshimosti smeshannykh zadach dlya giperbolicheskogo i parabolicheskogo uravnenii”, Uspekhi mat. nauk, 15:2 (1960), 97–154 | MR | Zbl

[5] Osipov Yu.S., “Pakety programm: podkhod k resheniyu zadach pozitsionnogo upravleniya s nepolnoi informatsiei”, Uspekhi mat. nauk, 61:4 (2006), 25–76 | DOI | Zbl

[6] Kryazhimskii A.V., Osipov Yu.S., “Idealizirovannye pakety programm i zadachi pozitsionnogo upravleniya s nepolnoi informatsiei”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15:3 (2009), 139–157

[7] Kritskov L.V., Abdukarimov M.F., “Granichnoe upravlenie smescheniem na odnom kontse pri svobodnom vtorom dlya protsessa, opisyvaemogo telegrafnym uravneniem s peremennym koeffitsientom”, Dokl. AN, 450:6 (2013), 640–643 | MR | Zbl

[8] Kolmogorov A.N., Fomin S.V., Elementy teorii funktsii i funktsionalnogo analiza, Izd. 4-e, pererab., Nauka, M., 1976, 543 pp. | MR

[9] Ivanov D.A., Potapov M.M., “Priblizhennoe reshenie zadachi bystrodeistviya dlya volnovogo uravneniya s granichnymi upravleniyami”, Tr. MIAN, 291 (2015), 112–127 | Zbl

[10] Dryazhenkov A.A., Potapov M.M., “Konstruktivnye neravenstva nablyudaemosti dlya slabykh obobschennykh reshenii volnovogo uravneniya s usloviem uprugogo zakrepleniya”, Zhurn. vychisl. matematiki i mat. fiziki, 54:6 (2014), 928–941 | DOI | MR | Zbl

[11] Dryazhenkov A.A., “Neravenstvo nablyudaemosti dlya volnovogo uravneniya s usloviem uprugogo zakrepleniya v sluchae kriticheskogo intervala vremeni”, Vestn. Mosk. un-ta. Ser.15: Vychisl. matematika i kibernetika, 2014, no. 3, 18–22 | MR | Zbl