On the existence of a Lipschitz feedback control in a control problem with state constraints
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 2, pp. 122-128 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a nonlinear control system with state constraints given as a solution set for a finite system of nonlinear inequalities. The problem of constructing a feedback control that ensures the viability of trajectories of the closed system in a small neighborhood of the boundary of the state constraints is studied. Under some assumptions, the existence of a feedback control in the form of a Lipschitz function of the state of the system is proved.
Keywords: state constraints, feedback control, viability problem, invariance.
@article{TIMM_2016_22_2_a13,
     author = {M. I. Gusev},
     title = {On the existence of a {Lipschitz} feedback control in a control problem with state constraints},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {122--128},
     year = {2016},
     volume = {22},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a13/}
}
TY  - JOUR
AU  - M. I. Gusev
TI  - On the existence of a Lipschitz feedback control in a control problem with state constraints
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 122
EP  - 128
VL  - 22
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a13/
LA  - ru
ID  - TIMM_2016_22_2_a13
ER  - 
%0 Journal Article
%A M. I. Gusev
%T On the existence of a Lipschitz feedback control in a control problem with state constraints
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 122-128
%V 22
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a13/
%G ru
%F TIMM_2016_22_2_a13
M. I. Gusev. On the existence of a Lipschitz feedback control in a control problem with state constraints. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 2, pp. 122-128. http://geodesic.mathdoc.fr/item/TIMM_2016_22_2_a13/

[1] Aubin J.-P., Viability theory, Birkhauser, Boston, 1991, 543 pp. | MR | Zbl

[2] Kurzhanski A.B., Filippova T.F., “On the theory of trajectory tubes - a mathematical formalism for uncertain dynamics, viability and control”, Advances in nonlinear dynamics and control: a report from Russia, Progr. Systems Control Theory, 17, Birkhauser, Boston, 1993, 122–188 | MR

[3] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 455 pp. | MR

[4] Chernousko F.L., Otsenivanie fazovogo sostoyaniya dinamicheskikh sistem, Nauka, M., 1988, 319 pp. | MR

[5] Kurzhanski A.B., Valyi I., Ellipsoidal calculus for estimation and control, Systems Control: Foundations Applications, Birkhauser, Boston, 1997, 321 pp. | DOI | MR | Zbl

[6] Osipov Yu. S., Kryazhimskii A.V., Inverse problems of ordinary differential equations: dynamic solutions, Gordon and Breach Science Publ., Basel, 1995, 625 pp. | MR

[7] Gusev M.I., “O snyatii fazovykh ogranichenii pri postroenii mnozhestv dostizhimosti”, Tr. In-ta matematiki i mekhaniki URO RAN, 20:4 (2014), 106–115 | MR

[8] Gusev M.I., “Vnutrennie approksimatsii mnozhestv dostizhimosti upravlyaemykh sistem s fazovymi ogranicheniyami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:4 (2013), 73–88 | MR

[9] Forcellini F., Rampazzo F., “On nonconvex differential inclusions whose state is constrained in the closure of an open set. Applications to dynamic programming”, Differential and Integral Equations, 12:4 (1999), 471–497 | MR | Zbl

[10] Frankowska H., Vinter R.B., “Existence of neighboring feasible trajectories: applications to dynamic programming for state-constrained optimal control problems”, J. Optim. Theory Appl., 104:1 (2000), 21–40 | DOI | MR | Zbl

[11] Bressan A., Facchi G., “Trajectories of differential inclusions with state constraints”, J. Differential Equations, 250:2 (2011), 2267–2281 | DOI | MR | Zbl

[12] Ornelas A., “Parametrization of Caratheodory multifunctions”, Rend. Sem. Mat. Univ. Padova, 83 (1990), 33–44 | MR | Zbl

[13] Robinson S.M., “Stability theory for systems of inequalities. I. Linear systems”, SIAM J. Numer. Anal., 12:5 (1975), 754–769 | DOI | MR | Zbl

[14] Mangasarian O.L., Shiau T.H., “Lipschitz continuity of solutions of linear inequalities, programs and complementarity problems”, SIAM J. Control Optim., 25:3 (1987), 583–595 | DOI | MR | Zbl